scispace - formally typeset
Search or ask a question
Topic

Dead reckoning

About: Dead reckoning is a research topic. Over the lifetime, 4268 publications have been published within this topic receiving 73475 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The NavShoe device provides not only robust approximate position, but also an extremely accurate orientation tracker on the foot, which can greatly reduce the database search space for computer vision, making it much simpler and more robust.
Abstract: A navigation system that tracks the location of a person on foot is useful for finding and rescuing firefighters or other emergency first responders, or for location-aware computing, personal navigation assistance, mobile 3D audio, and mixed or augmented reality applications. One of the main obstacles to the real-world deployment of location-sensitive wearable computing, including mixed reality (MR), is that current position-tracking technologies require an instrumented, marked, or premapped environment. At InterSense, we've developed a system called NavShoe, which uses a new approach to position tracking based on inertial sensing. Our wireless inertial sensor is small enough to easily tuck into the shoelaces, and sufficiently low power to run all day on a small battery. Although it can't be used alone for precise registration of close-range objects, in outdoor applications augmenting distant objects, a user would barely notice the NavShoe's meter-level error combined with any error in the head's assumed location relative to the foot. NavShoe can greatly reduce the database search space for computer vision, making it much simpler and more robust. The NavShoe device provides not only robust approximate position, but also an extremely accurate orientation tracker on the foot.

1,432 citations

Book
31 Dec 2007
TL;DR: In this paper, the authors present a single-source reference for navigation systems engineering, providing both an introduction to overall systems operation and an in-depth treatment of architecture, design, and component integration.
Abstract: Navigation systems engineering is a red-hot area. More and more technical professionals are entering the field and looking for practical, up-to-date engineering know-how. This single-source reference answers the call, providing both an introduction to overall systems operation and an in-depth treatment of architecture, design, and component integration. This book explains how satellite, on-board, and other navigation technologies operate, and it gives practitioners insight into performance issues such as processing chains and error sources. Providing solutions to systems designers and engineers, the book describes and compares different integration architectures, and explains how to diagnose errors. Moreover, this hands-on book includes appendices filled with terminology and equations for quick referencing.

1,351 citations

Book
01 Jan 1999
TL;DR: The Science of Navigation.
Abstract: The Science of Navigation. Coordinate Frames and Transformations. Systems Concepts. Discrete Linear and Non-Linear Kalman Filtering Techniques. The Global Positioning System. Inertial Navigation. Navigation Examples and Case Studies. Appendices: A: Notation, Symbols, and Constants. B: Matrix Review.

906 citations

Journal ArticleDOI
TL;DR: It is concluded that PDR techniques alone can offer good short- to medium- term tracking under certain circumstances, but that regular absolute position fixes from partner systems will be needed to ensure long-term operation and to cope with unexpected behaviours.
Abstract: With the continual miniaturisation of sensors and processing nodes, Pedestrian Dead Reckoning (PDR) systems are becoming feasible options for indoor tracking. These use inertial and other sensors, often combined with domain-specific knowledge about walking, to track user movements. There is currently a wealth of relevant literature spread across different research communities. In this survey, a taxonomy of modern PDRs is developed and used to contextualise the contributions from different areas. Techniques for step detection, characterisation, inertial navigation and step-and-heading-based dead-reckoning are reviewed and compared. Techniques that incorporate building maps through particle filters are analysed, along with hybrid systems that use absolute position fixes to correct dead-reckoning output. In addition, consideration is given to the possibility of using smartphones as PDR sensing devices. The survey concludes that PDR techniques alone can offer good short- to medium- term tracking under certain circumstances, but that regular absolute position fixes from partner systems will be needed to ensure long-term operation and to cope with unexpected behaviours. It concludes by identifying a detailed list of challenges for PDR researchers.

749 citations

Journal ArticleDOI
TL;DR: The flexible use of vectors, snapshots and landmark-based routes suffices to interpret the insect's behaviour and the cognitive-map approach in particular and the representational paradigm in general are discussed.
Abstract: Social hymenopterans such as bees and ants are central-place foragers; they regularly depart from and return to fixed positions in their environment. In returning to the starting point of their foraging excursion or to any other point, they could resort to two fundamentally different ways of navigation by using either egocentric or geocentric systems of reference. In the first case, they would rely on information continuously collected en route (path integration, dead reckoning), i.e. integrate all angles steered and all distances covered into a mean home vector. In the second case, they are expected, at least by some authors, to use a map-based system of navigation, i.e. to obtain positional information by virtue of the spatial position they occupy within a larger environmental framework. In bees and ants, path integration employing a skylight compass is the predominant mechanism of navigation, but geocentred landmark-based information is used as well. This information is obtained while the animal is dead-reckoning and, hence, added to the vector course. For example, the image of the horizon skyline surrounding the nest entrance is retinotopically stored while the animal approaches the goal along its vector course. As shown in desert ants (genus Cataglyphis), there is neither interocular nor intraocular transfer of landmark information. Furthermore, this retinotopically fixed, and hence egocentred, neural snapshot is linked to an external (geocentred) system of reference. In this way, geocentred information might more and more complement and potentially even supersede the egocentred information provided by the path-integration system. In competition experiments, however, Cataglyphis never frees itself of its homeward-bound vector - its safety-line, so to speak - by which it is always linked to home. Vector information can also be transferred to a longer-lasting (higher-order) memory. There is no need to invoke the concept of the mental analogue of a topographic map - a metric map - assembled by the insect navigator. The flexible use of vectors, snapshots and landmark-based routes suffices to interpret the insect's behaviour. The cognitive-map approach in particular, and the representational paradigm in general, are discussed.

625 citations


Network Information
Related Topics (5)
Wireless sensor network
142K papers, 2.4M citations
80% related
Control system
129K papers, 1.5M citations
79% related
Control theory
299.6K papers, 3.1M citations
79% related
Robustness (computer science)
94.7K papers, 1.6M citations
78% related
Feature extraction
111.8K papers, 2.1M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202371
2022157
202199
2020155
2019175
2018190