scispace - formally typeset
Search or ask a question
Topic

Debris flow

About: Debris flow is a research topic. Over the lifetime, 5944 publications have been published within this topic receiving 121197 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure.
Abstract: Recent advances in theory and experimen- tation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a com- prehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoret- ical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining stat- ic; both can deform in a slow, tranquil mode character- ized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompress- ible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (mea- sured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibra- tional energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ;10 m 3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris be- hind surge fronts is nearly liquefied by high pore pres- sure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic mod- els of debris flows therefore require equations that sim- ulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristi- cally originate as nearly rigid sediment masses, trans- form at least partly to liquefied flows, and then trans- form again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behav- iors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical so- lutions that successfully predict unsteady, nonuniform motion of experimental debris flows.

2,426 citations

Journal ArticleDOI
TL;DR: In this article, rainfall intensities and durations associated with shallow landsliding and debris flow activity suggests a limiting threshold for this type of slope instability, and the limit is defined based on the rainfall intensity and duration.
Abstract: Published records of the rainfall intensities and durations associated with shallow landsliding and debris flow activity suggests a limiting threshold for this type of slope instability. The limit ...

1,515 citations

Journal ArticleDOI
TL;DR: In this paper, a model for the topographic influence on shallow landslide initiation is developed by coupling digital terrain data with near-surface through flow and slope stability models, which predicts the degree of soil saturation in response to a steady state rainfall for topographic elements defined by the intersection of contours and flow tube boundaries.
Abstract: A model for the topographic influence on shallow landslide initiation is developed by coupling digital terrain data with near-surface through flow and slope stability models. The hydrologic model TOPOG (O'Loughlin, 1986) predicts the degree of soil saturation in response to a steady state rainfall for topographic elements defined by the intersection of contours and flow tube boundaries. The slope stability component uses this relative soil saturation to analyze the stability of each topographic element for the case of cohesionless soils of spatially constant thickness and saturated conductivity. The steady state rainfall predicted to cause instability in each topographic element provides a measure of the relative potential for shallow landsliding. The spatial distribution of critical rainfall values is compared with landslide locations mapped from aerial photographs and in the field for three study basins where high-resolution digital elevation data are available: Tennessee Valley in Marin County, California; Mettman Ridge in the Oregon Coast Range; and Split Creek on the Olympic Peninsula, Washington. Model predictions in each of these areas are consistent with spatial patterns of observed landslide scars, although hydrologic complexities not accounted for in the model (e.g., spatial variability of soil properties and bedrock flow) control specific sites and timing of debris flow initiation within areas of similar topographic control.

1,431 citations

Journal ArticleDOI
TL;DR: In this article, a global database of 2,626 rainfall events that have resulted in shallow landslides and debris flows was compiled through a thorough literature search, and the rainfall and landslide information was used to update the dependency of the minimum level of rainfall duration and intensity likely to result in shallow landslide and debris flow established by Nel Caine in 1980.
Abstract: A global database of 2,626 rainfall events that have resulted in shallow landslides and debris flows was compiled through a thorough literature search. The rainfall and landslide information was used to update the dependency of the minimum level of rainfall duration and intensity likely to result in shallow landslides and debris flows established by Nel Caine in 1980. The rainfall intensity–duration (ID) values were plotted in logarithmic coordinates, and it was established that with increased rainfall duration, the minimum average intensity likely to trigger shallow slope failures decreases linearly, in the range of durations from 10 min to 35 days. The minimum ID for the possible initiation of shallow landslides and debris flows was determined. The threshold curve was obtained from the rainfall data using an objective statistical technique. To cope with differences in the intensity and duration of rainfall likely to result in shallow slope failures in different climatic regions, the rainfall information was normalized to the mean annual precipitation and the rainy-day normal. Climate information was obtained from the global climate dataset compiled by the Climate Research Unit of the East Anglia University. The obtained global ID thresholds are significantly lower than the threshold proposed by Caine (Geogr Ann A 62:23–27, 1980), and lower than other global thresholds proposed in the literature. The new global ID thresholds can be used in a worldwide operational landslide warning system based on global precipitation measurements where local and regional thresholds are not available..

1,114 citations

Journal ArticleDOI
TL;DR: In this paper, a new division of landslide materials is proposed, based on genetic and morphological aspects rather than arbitrary grain-size limits, which would allow the terms to be retained with their original meanings while making their application less ambiguous.
Abstract: As a result of the widespread use of the landslide classifications of Varnes (1978), and Hutchinson (1988), certain terms describing common types of flow-like mass movements have become entrenched in the language of engineering geology. Example terms include debris flow, debris avalanche and mudslide. Here, more precise definitions of the terms are proposed, which would allow the terms to be retained with their original meanings while making their application less ambiguous. A new division of landslide materials is proposed, based on genetic and morphological aspects rather than arbitrary grain-size limits. The basic material groups include sorted materials: gravel, sand, silt, and clay, unsorted materials: debris, earth and mud, peat and rock. Definitions are proposed for relatively slow non-liquefied sand or gravel flows, extremely rapid sand, silt or debris flow slides accompanied by liquefaction, clay flow slides involving extra-sensitive clays, peat flows, slow to rapid earth flows in nonsensitive plastic clays, debris flows which occur in steep established channels or gullies, mud flows considered as cohesive debris flows, debris floods involving massive sediment transport at limited discharges, debris avalanches which occur on open hill slopes and rock avalanches formed by large scale failures of bedrock.

984 citations


Network Information
Related Topics (5)
Surface runoff
45.1K papers, 1.1M citations
84% related
Sediment
48.7K papers, 1.2M citations
81% related
Precipitation
32.8K papers, 990.4K citations
81% related
Groundwater
59.3K papers, 1M citations
80% related
Subduction
22.4K papers, 1.1M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023371
2022664
2021307
2020273
2019295
2018325