scispace - formally typeset
Search or ask a question
Topic

Debye model

About: Debye model is a research topic. Over the lifetime, 7462 publications have been published within this topic receiving 133987 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the properties of the Al x Ga1−x As/GaAs heterostructure system is presented, which can be classified into sixteen groups: (1) lattice constant and crystal density, (2) melting point, (3) thermal expansion coefficient, (4), lattice dynamic properties, (5) lattices thermal properties,(6) electronic-band structure, (7) external perturbation effects on the bandgap energy, (8) effective mass, (9) deformation potential, (10) static and
Abstract: The Al x Ga1−x As/GaAs heterostructure system is potentially useful material for high‐speed digital, high‐frequency microwave, and electro‐optic device applications Even though the basic Al x Ga1−x As/GaAs heterostructure concepts are understood at this time, some practical device parameters in this system have been hampered by a lack of definite knowledge of many material parameters Recently, Blakemore has presented numerical and graphical information about many of the physical and electronic properties of GaAs [J S Blakemore, J Appl Phys 5 3, R123 (1982)] The purpose of this review is (i) to obtain and clarify all the various material parameters of Al x Ga1−x As alloy from a systematic point of view, and (ii) to present key properties of the material parameters for a variety of research works and device applications A complete set of material parameters are considered in this review for GaAs, AlAs, and Al x Ga1−x As alloys The model used is based on an interpolation scheme and, therefore, necessitates known values of the parameters for the related binaries (GaAs and AlAs) The material parameters and properties considered in the present review can be classified into sixteen groups: (1) lattice constant and crystal density, (2) melting point, (3) thermal expansion coefficient, (4) lattice dynamic properties, (5) lattice thermal properties, (6) electronic‐band structure, (7) external perturbation effects on the band‐gap energy, (8) effective mass, (9) deformation potential, (10) static and high‐frequency dielectric constants, (11) magnetic susceptibility, (12) piezoelectric constant, (13) Frohlich coupling parameter, (14) electron transport properties, (15) optical properties, and (16) photoelastic properties Of particular interest is the deviation of material parameters from linearity with respect to the AlAs mole fraction x Some material parameters, such as lattice constant, crystal density, thermal expansion coefficient, dielectric constant, and elastic constant, obey Vegard’s rule well Other parameters, eg, electronic‐band energy, lattice vibration (phonon) energy, Debye temperature, and impurity ionization energy, exhibit quadratic dependence upon the AlAs mole fraction However, some kinds of the material parameters, eg, lattice thermal conductivity, exhibit very strong nonlinearity with respect to x, which arises from the effects of alloy disorder It is found that the present model provides generally acceptable parameters in good agreement with the existing experimental data A detailed discussion is also given of the acceptability of such interpolated parameters from an aspect of solid‐state physics Key properties of the material parameters for use in research work and a variety of Al x Ga1−x As/GaAs device applications are also discussed in detail

2,671 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the Reuss and Voigt approximations can be used to estimate, accurately, the mean sound velocity of a crystal, which is proportioned to the Debye temperature.

2,488 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide numerical and graphical information about many physical and electronic properties of GaAs that are useful to those engaged in experimental research and development on this material, including properties of the material itself, and the host of effects associated with the presence of specific impurities and defects is excluded from coverage.
Abstract: This review provides numerical and graphical information about many (but by no means all) of the physical and electronic properties of GaAs that are useful to those engaged in experimental research and development on this material. The emphasis is on properties of GaAs itself, and the host of effects associated with the presence of specific impurities and defects is excluded from coverage. The geometry of the sphalerite lattice and of the first Brillouin zone of reciprocal space are used to pave the way for material concerning elastic moduli, speeds of sound, and phonon dispersion curves. A section on thermal properties includes material on the phase diagram and liquidus curve, thermal expansion coefficient as a function of temperature, specific heat and equivalent Debye temperature behavior, and thermal conduction. The discussion of optical properties focusses on dispersion of the dielectric constant from low frequencies [κ0(300)=12.85] through the reststrahlen range to the intrinsic edge, and on the ass...

2,115 citations

Journal ArticleDOI
TL;DR: In this paper, a quasi-harmonic Debye model is used to generate the Debye temperature Θ(V), obtains the non-equilibrium Gibbs function G★(V;p,T), and minimizes G★ to derive the thermal equation of state (EOS) V(p, T) and the chemical potential G(p and T) of the corresponding phase.

1,480 citations

Book ChapterDOI
Glen A. Slack1
TL;DR: In this article, the authors studied the thermal conductivity of non-metallic crystals at temperatures comparable to or higher than the Debye temperature, where the dominant carriers of thermal energy are phonons and the dominant scattering mechanism is the intrinsic phonon-phonon scattering.
Abstract: Publisher Summary This chapter reviews the thermal conductivity of nonmetallic crystals at temperatures comparable to or higher than the Debye temperature. It deals with the intrinsic behavior of such pure crystals at high temperatures. In such crystals, the dominant carriers of thermal energy are phonons and the dominant scattering mechanism to be considered is the intrinsic phonon–phonon scattering. This is a small section of the much larger problem of the thermal conductivity of nonmetallic solids and clearly it neglects possible heat transport by photons, charge carriers, polarons, and magnons. It also neglects other possible phonon scattering mechanisms such as isotopes, impurities, vacancies, charge carriers, dislocations, grain boundaries, and crystal boundaries. It presents the absolute value of the thermal conductivity, K, as determined by phonon–phonon scattering, the temperature dependence of K, the volume dependence of K, the change in K upon melting, and the minimum value of K. The chapter discusses a composite curve for the thermal conductivity versus temperature of pure KCl measured at a constant pressure of, say, one atmosphere.

734 citations


Network Information
Related Topics (5)
Magnetization
107.8K papers, 1.9M citations
92% related
Band gap
86.8K papers, 2.2M citations
92% related
Amorphous solid
117K papers, 2.2M citations
90% related
Thin film
275.5K papers, 4.5M citations
90% related
Raman spectroscopy
122.6K papers, 2.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023178
2022346
2021303
2020242
2019285
2018304