scispace - formally typeset
Search or ask a question
Topic

Debye model

About: Debye model is a research topic. Over the lifetime, 7462 publications have been published within this topic receiving 133987 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the real and imaginary part of the dielectric constant of liquid water in the far-infrared region from 0.1 to 2.0 THz in a temperature range from 271.1 K to 366.7 K were obtained with the use of THz time domain reflection spectroscopy.
Abstract: We report measurements of the real and imaginary part of the dielectric constant of liquid water in the far-infrared region from 0.1 to 2.0 THz in a temperature range from 271.1 to 366.7 K. The data have been obtained with the use of THz time domain reflection spectroscopy, utilizing ultrashort electromagnetic pulses generated from a photoconductive antenna driven by femtosecond laser pulses. A Debye model with an additional relaxation time is used to fit the frequency dependence of the complex dielectric constants. We obtain a fast (fs) and a Debye (ps) relaxation time for the macroscopic polarization. The corresponding time correlation functions have been calculated with molecular dynamics simulations and are compared with experimental relaxation times. The temperature dependence of the Debye relaxation time is analyzed using three models: Transition state theory, a Debye–Stoke–Einstein relation between the viscosity and the Debye time, and a model stating that its temperature dependence can be extrapolated from a singularity of liquid water at 228 K. We find an excellent agreement between experiment and the two latter models. The simulations, however, present results with too large statistical error for establishing a relation for the temperature dependence.

564 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported calculations of properties of C{sub 60} as a gas and a solid. But, because of the spherical form of the C{ sub 60} molecule, it was treated as a sphere for some calculations.
Abstract: The author reports calculations of properties of C{sub 60} as a gas and a solid. Because of the spherical form of the C{sub 60} molecule, it is treated as a sphere for some calculations. For gas phase molecules the equation of state is derived, from calculations of the second virial coefficient. For solids, compressibility, surface energy, and specific heat are calculated.

531 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of the electronic stopping power (Se) in metals irradiated by swift heavy ions was investigated in the framework of the thermal-spike model, and the effect on the lattice temperature induced by swift-heavy ion irradiation was calculated.
Abstract: In the framework of the thermal-spike model the present paper deals with the effect of the electronic stopping power (Se) in metals irradiated by swift heavy ions. Using the strength of the electron-phonon coupling g(z) with the number of valence electrons z as the unique free parameter, the increment of lattice temperature induced by swift-heavy-ion irradiation is calculated. Choosing z=2, the calculated threshold of defect creation by Se for Ti, Zr, Co and Fe is about 11, 27.5, 28 and 41 keV nm-1, in good agreement with experiment. Taking the same z value, the calculation shows that Al, Cu, Nb and Ag are Se insensitive. Moreover, in Fe, the differences in the damage created by U ions of different energies but exhibiting the same value of Se may be interpreted by a velocity effect. Using z=2, other calculations suggest that Be (Se>or=11 keV nm-1), Ga (Se>or=5 keV nm-1) and Ni (Se>or=49 keV nm-1) should be sensitive to Se but Mg should not. These examples put the stress on the effect of the physical parameters governing the electron-phonon coupling constant apart from z determination: the sound velocity linked to the Debye temperature and the lattice thermal conductivity. Furthermore, a simple criterion is proposed in order to predict the Se sensitivity of metals.

493 citations

Journal ArticleDOI
TL;DR: In this paper, the thermal conductance associated with electron-phonon coupling in a metal near a metal-nonmetal interface can be estimated as hep=Gkp, where G is the volumetric electron and phonon or lattice thermal conductivity of the metal.
Abstract: We theoretically show that the thermal conductance associated with electron–phonon coupling in a metal near a metal–nonmetal interface can be estimated as hep=Gkp, where G is the volumetric electron–phonon coupling constant and kp is the phonon or lattice thermal conductivity of the metal. The expression suggests hep≈1/T at temperatures comparable to the Debye temperature of the metal. The predicted values of hep fall within the range of conductance values experimentally observed (0.3–1 GW/m2 K), suggesting that it cannot be ignored, and could even play a dominant role at high temperatures. Predictions of the total thermal conductance, that include both electron–phonon and phonon–phonon interfacial conductances, show reasonable agreement in its temperature dependence with experimental data for TiN/MgO interfaces.

421 citations

Journal ArticleDOI
TL;DR: It is revealed, using experimental detection of the interaction between two planar charged surfaces across a wide range of electrolytes, that beyond the dilute (Debye-Hückel) regime the screening length increases with increasing concentration.
Abstract: According to classical electrolyte theories interactions in dilute (low ion density) electrolytes decay exponentially with distance, with the Debye screening length the characteristic length scale. This decay length decreases monotonically with increasing ion concentration due to effective screening of charges over short distances. Thus, within the Debye model no long-range forces are expected in concentrated electrolytes. Here we reveal, using experimental detection of the interaction between two planar charged surfaces across a wide range of electrolytes, that beyond the dilute (Debye–Huckel) regime the screening length increases with increasing concentration. The screening lengths for all electrolytes studied—including aqueous NaCl solutions, ionic liquids diluted with propylene carbonate, and pure ionic liquids—collapse onto a single curve when scaled by the dielectric constant. This nonmonotonic variation of the screening length with concentration, and its generality across ionic liquids and aqueous ...

407 citations


Network Information
Related Topics (5)
Magnetization
107.8K papers, 1.9M citations
92% related
Band gap
86.8K papers, 2.2M citations
92% related
Amorphous solid
117K papers, 2.2M citations
90% related
Thin film
275.5K papers, 4.5M citations
90% related
Raman spectroscopy
122.6K papers, 2.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023178
2022346
2021303
2020242
2019285
2018304