scispace - formally typeset
Search or ask a question
Topic

Decarboxylation

About: Decarboxylation is a research topic. Over the lifetime, 9914 publications have been published within this topic receiving 193955 citations. The topic is also known as: decarboxylation reaction.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the density functional theory method (M05-2X/6-31G(d)) was used to investigate reaction mechanisms for deoxygenation of graphene oxides with hydrazine or heat treatment.
Abstract: The density functional theory method (M05-2X/6-31G(d)) was used to investigate reaction mechanisms for deoxygenation of graphene oxides (GOs) with hydrazine or heat treatment. Three mechanisms were identified as reducing epoxide groups of GO with hydrazine as a reducing agent. No reaction path was found for the hydrazine-mediated reductions of the hydroxyl, carbonyl, and carboxyl groups of GO. We instead discovered the mechanisms for dehydroxylation, decarbonylation, and decarboxylation using heat treatment. The hydrazine de-epoxidation and thermal dehydroxylation of GO have opposite dependencies on the reaction temperature. In both reduction types, the oxygen functionalities attached to the interior of an aromatic domain in GO are removed more easily, both kinetically and thermodynamically, than those attached at the edges of an aromatic domain. The hydrazine-mediated reductions of epoxide groups at the edges are suspended by forming hydrazino alcohols. We provide atomic-level elucidation for the deoxyge...

1,033 citations

Journal ArticleDOI
TL;DR: The results suggest that the role of the Cys --> Gln beta-ketoacyl synthases found in the loading domains of some modular polyketide synthases likely is to act as malonyl, or methylmalonyL, decarboxylases that provide a source of primer for the chain extension reactions catalyzed by associated modules containing fully competent beta- ketoacyL synthases.
Abstract: beta-Ketoacyl synthases involved in the biosynthesis of fatty acids and polyketides exhibit extensive sequence similarity and share a common reaction mechanism, in which the carbanion participating in the condensation reaction is generated by decarboxylation of a malonyl or methylmalonyl moiety; normally, the decarboxylation step does not take place readily unless an acyl moiety is positioned on the active-site cysteine residue in readiness for the ensuing condensation reaction. Replacement of the cysteine nucleophile (Cys-161) with glutamine, in the beta-ketoacyl synthase domain of the multifunctional animal fatty acid synthase, completely inhibits the condensation reaction but increases the uncoupled rate of malonyl decarboxylation by more than 2 orders of magnitude. On the other hand, replacement with Ser, Ala, Asn, Gly, and Thr compromises the condensation reaction without having any marked effect on the decarboxylation reaction. The affinity of the beta-ketoacyl synthase for malonyl moieties, in the absence of acetyl moieties, is significantly increased in the Cys161Gln mutant compared to that in the wild type and is similar to that exhibited by the wild-type beta-ketoacyl synthase in the presence of an acetyl primer. These results, together with modeling studies of the Cys --> Gln mutant from the crystal structure of the Escherichia coli beta-ketoacyl synthase II enzyme, suggest that the side chain carbonyl group of the Gln-161 can mimic the carbonyl of the acyl moiety in the acyl-enzyme intermediate so that the mutant adopts a conformation analogous to that of the acyl-enzyme intermediate. Catalysis of the decarboxylation of malonyl-CoA requires the dimeric form of the Cys161Gln fatty acid synthase and involves prior transfer of the malonyl moiety from the CoA ester to the acyl carrier protein domain and subsequent release of the acetyl product by transfer back to a CoA acceptor. These results suggest that the role of the Cys --> Gln beta-ketoacyl synthases found in the loading domains of some modular polyketide synthases likely is to act as malonyl, or methylmalonyl, decarboxylases that provide a source of primer for the chain extension reactions catalyzed by associated modules containing fully competent beta-ketoacyl synthases.

1,015 citations

Journal ArticleDOI
TL;DR: In the liquefaction process, the micellar-like broken down fragments produced by hydrolysis are degraded to smaller compounds by dehydration, dehydrogenation, deoxygenation and decarboxylation as mentioned in this paper.

904 citations

Journal ArticleDOI
04 Aug 2006-Science
TL;DR: A safe and convenient cross-coupling strategy for the large-scale synthesis of biaryls, commercially important structures often found in biologically active molecules, using a copper catalyst to generate the carbon nucleophiles in situ via decarboxylation of easily accessible arylcarboxylic acid salts.
Abstract: We present a safe and convenient cross-coupling strategy for the large-scale synthesis of biaryls, commercially important structures often found in biologically active molecules. In contrast to traditional cross-couplings, which require the prior preparation of organometallic reagents, we use a copper catalyst to generate the carbon nucleophiles in situ, via decarboxylation of easily accessible arylcarboxylic acid salts. The scope and potential economic impact of the reaction are demonstrated by the synthesis of 26 biaryls, one of which is an intermediate in the large-scale production of the agricultural fungicide Boscalid.

801 citations

Journal ArticleDOI
J. Hoigné1, Hans-Peter Bader1
TL;DR: In this paper, it was shown that up to 0.55 ± 0.08 mol of hydroxyl radicals may be produced from 1 mol ozone at pH 10.5.

776 citations


Network Information
Related Topics (5)
Alkyl
223.5K papers, 2M citations
92% related
Reagent
60K papers, 1.2M citations
91% related
Aryl
95.6K papers, 1.3M citations
91% related
Nuclear magnetic resonance spectroscopy
42.6K papers, 1M citations
90% related
Catalysis
400.9K papers, 8.7M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023188
2022395
2021242
2020244
2019285
2018255