scispace - formally typeset
Search or ask a question
Topic

Deceleration parameter

About: Deceleration parameter is a research topic. Over the lifetime, 1776 publications have been published within this topic receiving 89440 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the evolution of the universe is studied in terms of an anisotropic Bianchi type-V cosmological model, and an exact solution to the corresponding equations are obtained.
Abstract: Within the scope of an anisotropic Bianchi type-V cosmological model we have studied the evolution of the universe. The assumption of a diagonal energy-momentum tensor leads to some severe restriction on the metric functions, which on its part imposes restriction on the components of the energy momentum tensor. This model allows anisotropic matter distribution. Further using the proportionality condition that relates the shear scalar (σ) in the model with the expansion scalar (ϑ) and the variation law of Hubble parameter, connecting Hubble parameter with volume scale. Exact solution to the corresponding equations are obtained. The EoS parameter for dark energy as well as deceleration parameter is found to be the time varying functions. A qualitative picture of the evolution of the universe corresponding to different of its stages is given using the latest observational data.

12 citations

Journal ArticleDOI
TL;DR: In this paper, the cosmological implications of interacting pilgrim dark energy (PDE) models with cold dark matter (ΛCDM) in fractal cosmology by assuming the flat universe were discussed.
Abstract: We discuss the cosmological implications of interacting pilgrim dark energy (PDE) models (with Hubble, Granda–Oliveros and generalized ghost cutoffs) with cold dark matter (ΛCDM) in fractal cosmology by assuming the flat universe. We observe that the Hubble parameter lies within observational suggested ranges while deceleration parameter represents the accelerated expansion behavior of the universe. The equation of state (EoS) parameter (ωD) corresponds to the quintessence region and phantom region for different cases of u. Further, we can see that ωD–ωD′ (where prime indicates the derivative with respect to natural logarithmic of scale factor) plane describes the freezing and thawing regions and also corresponds to ΛCDM limit for some cases of u (PDE parameter). It is also noted that the r–s (state-finder parameters) plane corresponds to ΛCDM limit and also shows the Chaplygin as well as phantom/quintessence behavior. It is observed that pilgrim dark energy models in fractal cosmology expressed the consistent behavior with recent observational schemes.

12 citations

Journal ArticleDOI
TL;DR: In this paper, a dark energy cosmological model is revisited wherein the cosmology constant of the EFE is considered as a candidate of dark energy and the solution procedure is adopted in a model independent way.
Abstract: In view of late-time cosmic acceleration, a dark energy cosmological model is revisited wherein Einstein's cosmological constant is considered as a candidate of dark energy. Exact solution of Einstein field equations (EFEs) is derived in a homogeneous isotropic background in classical general relativity. The solution procedure is adopted, in a model independent way (or the cosmological parametrization). A simple parametrization of the Hubble parameter (H) as a function of cosmic time `t' is considered which produces an exponential type of evolution of the scale factor (a) and also shows a negative value of deceleration parameter at the present time with a signature flip from early deceleration to late acceleration. Cosmological dynamics of the model obtained have been discussed illustratively for different phases of the evolution of the universe. The evolution of different cosmological parameters are shown graphically for at and closed cases of Friedmann-Lemaitre-Robertson-Walker (FLRW) space-time for the presented model (open case is incompatible to the present scenario). We have also constrained our model parameters with the updated (36 points) observational Hubble dataset.

12 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated plane symmetric cosmological models with negative constant deceleration parameter in Barber's (Gen. Relativ. 14:117, 1982) second self-creation theory in presence of perfect fluid source.
Abstract: In this paper, we have investigated plane symmetric cosmological models with negative constant deceleration parameter in Barber’s (Gen. Relativ. Gravit. 14:117, 1982) second self-creation theory in presence of perfect fluid source. For this we use a special law of variation for Hubble parameter proposed by Bermann (Nuovo Cim. B 74:182, 1983) that yields a constant deceleration parameter model of the universe. Some physical properties of the models and entropy are discussed and studied.

12 citations

Journal ArticleDOI
TL;DR: In this paper, a thorough examination of the conditions for the existence of back-reaction and an "effective" acceleration in regular generic spherically symmetric Lemaitre-Tolman-Bondi (LTB) dust models is provided.
Abstract: We provide a thorough examination of the conditions for the existence of back-reaction and an "effective" acceleration (in the context of Buchert's averaging formalism) in regular generic spherically symmetric Lemaitre-Tolman-Bondi (LTB) dust models. By considering arbitrary spherical comoving domains, we verify rigorously the fulfillment of these conditions expressed in terms of suitable scalar variables that are evaluated at the boundary of every domain. Effective deceleration necessarily occurs in all domains in: (a) the asymptotic radial range of models converging to a FLRW background, (b) the asymptotic time range of non-vacuum hyperbolic models, (c) LTB self-similar solutions and (d) near a simultaneous big bang. Accelerating domains are proven to exist in the following scenarios: (i) central vacuum regions, (ii) central (non-vacuum) density voids, (iii) the intermediate radial range of models converging to a FLRW background, (iv) the asymptotic radial range of models converging to a Minkowski vacuum and (v) domains near and/or intersecting a non-simultaneous big bang. All these scenarios occur in hyperbolic models with negative averaged and local spatial curvature, though scenarios (iv) and (v) are also possible in low density regions of a class of elliptic models in which local spatial curvature is negative but its average is positive. Rough numerical estimates between -0.003 and -0.5 were found for the effective deceleration parameter. While the existence of accelerating domains cannot be ruled out in models converging to an Einstein de Sitter background and in domains undergoing gravitational collapse, the conditions for this are very restrictive. The results obtained may provide important theoretical clues on the effects of back-reaction and averaging in more general non-spherical models.

12 citations


Network Information
Related Topics (5)
General relativity
29K papers, 810.8K citations
92% related
Gravitation
29.3K papers, 821.5K citations
90% related
Black hole
40.9K papers, 1.5M citations
89% related
Dark matter
41.5K papers, 1.5M citations
86% related
Gauge theory
38.7K papers, 1.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023120
2022210
2021128
2020116
2019107
201892