scispace - formally typeset
Search or ask a question
Topic

Deep belief network

About: Deep belief network is a research topic. Over the lifetime, 3559 publications have been published within this topic receiving 206198 citations. The topic is also known as: DBN.


Papers
More filters
Proceedings ArticleDOI
05 Jul 2008
TL;DR: This work introduces and motivate a new training principle for unsupervised learning of a representation based on the idea of making the learned representations robust to partial corruption of the input pattern.
Abstract: Previous work has shown that the difficulties in learning deep generative or discriminative models can be overcome by an initial unsupervised learning step that maps inputs to useful intermediate representations. We introduce and motivate a new training principle for unsupervised learning of a representation based on the idea of making the learned representations robust to partial corruption of the input pattern. This approach can be used to train autoencoders, and these denoising autoencoders can be stacked to initialize deep architectures. The algorithm can be motivated from a manifold learning and information theoretic perspective or from a generative model perspective. Comparative experiments clearly show the surprising advantage of corrupting the input of autoencoders on a pattern classification benchmark suite.

6,816 citations

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors proposed a deep learning method for single image super-resolution (SR), which directly learns an end-to-end mapping between the low/high-resolution images.
Abstract: We propose a deep learning method for single image super-resolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The mapping is represented as a deep convolutional neural network (CNN) that takes the low-resolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network. But unlike traditional methods that handle each component separately, our method jointly optimizes all layers. Our deep CNN has a lightweight structure, yet demonstrates state-of-the-art restoration quality, and achieves fast speed for practical on-line usage. We explore different network structures and parameter settings to achieve trade-offs between performance and speed. Moreover, we extend our network to cope with three color channels simultaneously, and show better overall reconstruction quality.

6,122 citations

Journal ArticleDOI
TL;DR: A product of experts (PoE) is an interesting candidate for a perceptual system in which rapid inference is vital and generation is unnecessary because it is hard even to approximate the derivatives of the renormalization term in the combination rule.
Abstract: It is possible to combine multiple latent-variable models of the same data by multiplying their probability distributions together and then renormalizing. This way of combining individual "expert" models makes it hard to generate samples from the combined model but easy to infer the values of the latent variables of each expert, because the combination rule ensures that the latent variables of different experts are conditionally independent when given the data. A product of experts (PoE) is therefore an interesting candidate for a perceptual system in which rapid inference is vital and generation is unnecessary. Training a PoE by maximizing the likelihood of the data is difficult because it is hard even to approximate the derivatives of the renormalization term in the combination rule. Fortunately, a PoE can be trained using a different objective function called "contrastive divergence" whose derivatives with regard to the parameters can be approximated accurately and efficiently. Examples are presented of contrastive divergence learning using several types of expert on several types of data.

5,150 citations

Journal Article
TL;DR: Denoising autoencoders as mentioned in this paper are trained locally to denoise corrupted versions of their inputs, which is a straightforward variation on the stacking of ordinary autoencoder.
Abstract: We explore an original strategy for building deep networks, based on stacking layers of denoising autoencoders which are trained locally to denoise corrupted versions of their inputs. The resulting algorithm is a straightforward variation on the stacking of ordinary autoencoders. It is however shown on a benchmark of classification problems to yield significantly lower classification error, thus bridging the performance gap with deep belief networks (DBN), and in several cases surpassing it. Higher level representations learnt in this purely unsupervised fashion also help boost the performance of subsequent SVM classifiers. Qualitative experiments show that, contrary to ordinary autoencoders, denoising autoencoders are able to learn Gabor-like edge detectors from natural image patches and larger stroke detectors from digit images. This work clearly establishes the value of using a denoising criterion as a tractable unsupervised objective to guide the learning of useful higher level representations.

4,814 citations

Book ChapterDOI
06 Sep 2014
TL;DR: This work proposes a deep learning method for single image super-resolution (SR) that directly learns an end-to-end mapping between the low/high-resolution images and shows that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network.
Abstract: We propose a deep learning method for single image super-resolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The mapping is represented as a deep convolutional neural network (CNN) [15] that takes the low-resolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network. But unlike traditional methods that handle each component separately, our method jointly optimizes all layers. Our deep CNN has a lightweight structure, yet demonstrates state-of-the-art restoration quality, and achieves fast speed for practical on-line usage.

4,445 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
88% related
Convolutional neural network
74.7K papers, 2M citations
88% related
Artificial neural network
207K papers, 4.5M citations
88% related
Deep learning
79.8K papers, 2.1M citations
87% related
Optimization problem
96.4K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023109
2022300
2021379
2020453
2019509