scispace - formally typeset
Search or ask a question
Topic

Deep belief network

About: Deep belief network is a research topic. Over the lifetime, 3559 publications have been published within this topic receiving 206198 citations. The topic is also known as: DBN.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that better phone recognition on the TIMIT dataset can be achieved by replacing Gaussian mixture models by deep neural networks that contain many layers of features and a very large number of parameters.
Abstract: Gaussian mixture models are currently the dominant technique for modeling the emission distribution of hidden Markov models for speech recognition. We show that better phone recognition on the TIMIT dataset can be achieved by replacing Gaussian mixture models by deep neural networks that contain many layers of features and a very large number of parameters. These networks are first pre-trained as a multi-layer generative model of a window of spectral feature vectors without making use of any discriminative information. Once the generative pre-training has designed the features, we perform discriminative fine-tuning using backpropagation to adjust the features slightly to make them better at predicting a probability distribution over the states of monophone hidden Markov models.

1,767 citations

Journal ArticleDOI
TL;DR: The applications of deep learning in machine health monitoring systems are reviewed mainly from the following aspects: Auto-encoder and its variants, Restricted Boltzmann Machines, Convolutional Neural Networks, and Recurrent Neural Networks.

1,569 citations

Journal Article
TL;DR: A Deep Boltzmann Machine is proposed for learning a generative model of multimodal data and it is shown that the model can be used to create fused representations by combining features across modalities, which are useful for classification and information retrieval.
Abstract: Data often consists of multiple diverse modalities For example, images are tagged with textual information and videos are accompanied by audio Each modality is characterized by having distinct statistical properties We propose a Deep Boltzmann Machine for learning a generative model of such multimodal data We show that the model can be used to create fused representations by combining features across modalities These learned representations are useful for classification and information retrieval By sampling from the conditional distributions over each data modality, it is possible to create these representations even when some data modalities are missing We conduct experiments on bimodal image-text and audio-video data The fused representation achieves good classification results on the MIR-Flickr data set matching or outperforming other deep models as well as SVM based models that use Multiple Kernel Learning We further demonstrate that this multimodal model helps classification and retrieval even when only unimodal data is available at test time

1,422 citations

Journal ArticleDOI
TL;DR: A new CNN based on LeNet-5 is proposed for fault diagnosis which can extract the features of the converted 2-D images and eliminate the effect of handcrafted features and has achieved significant improvements.
Abstract: Fault diagnosis is vital in manufacturing system, since early detections on the emerging problem can save invaluable time and cost. With the development of smart manufacturing, the data-driven fault diagnosis becomes a hot topic. However, the traditional data-driven fault diagnosis methods rely on the features extracted by experts. The feature extraction process is an exhausted work and greatly impacts the final result. Deep learning (DL) provides an effective way to extract the features of raw data automatically. Convolutional neural network (CNN) is an effective DL method. In this study, a new CNN based on LeNet-5 is proposed for fault diagnosis. Through a conversion method converting signals into two-dimensional (2-D) images, the proposed method can extract the features of the converted 2-D images and eliminate the effect of handcrafted features. The proposed method which is tested on three famous datasets, including motor bearing dataset, self-priming centrifugal pump dataset, and axial piston hydraulic pump dataset, has achieved prediction accuracy of 99.79%, 99.481%, and 100%, respectively. The results have been compared with other DL and traditional methods, including adaptive deep CNN, sparse filter, deep belief network, and support vector machine. The comparisons show that the proposed CNN-based data-driven fault diagnosis method has achieved significant improvements.

1,240 citations

Journal ArticleDOI
TL;DR: The experiment results show that neural signatures associated with different emotions do exist and they share commonality across sessions and individuals, and the performance of deep models with shallow models is compared.
Abstract: To investigate critical frequency bands and channels, this paper introduces deep belief networks (DBNs) to constructing EEG-based emotion recognition models for three emotions: positive, neutral and negative. We develop an EEG dataset acquired from 15 subjects. Each subject performs the experiments twice at the interval of a few days. DBNs are trained with differential entropy features extracted from multichannel EEG data. We examine the weights of the trained DBNs and investigate the critical frequency bands and channels. Four different profiles of 4, 6, 9, and 12 channels are selected. The recognition accuracies of these four profiles are relatively stable with the best accuracy of 86.65%, which is even better than that of the original 62 channels. The critical frequency bands and channels determined by using the weights of trained DBNs are consistent with the existing observations. In addition, our experiment results show that neural signatures associated with different emotions do exist and they share commonality across sessions and individuals. We compare the performance of deep models with shallow models. The average accuracies of DBN, SVM, LR, and KNN are 86.08%, 83.99%, 82.70%, and 72.60%, respectively.

1,131 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
88% related
Convolutional neural network
74.7K papers, 2M citations
88% related
Artificial neural network
207K papers, 4.5M citations
88% related
Deep learning
79.8K papers, 2.1M citations
87% related
Optimization problem
96.4K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023109
2022300
2021379
2020453
2019509