scispace - formally typeset
Search or ask a question
Topic

Deep reactive-ion etching

About: Deep reactive-ion etching is a research topic. Over the lifetime, 2113 publications have been published within this topic receiving 35932 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The wet etching of GaN, AlN, and SiC is reviewed in this paper, including conventional etching in aqueous solutions, electrochemical etch in electrolytes and defect-selective chemical etched in molten salts.
Abstract: The wet etching of GaN, AlN, and SiC is reviewed including conventional etching in aqueous solutions, electrochemical etching in electrolytes and defect-selective chemical etching in molten salts. The mechanism of each etching process is discussed. Etching parameters leading to highly anisotropic etching, dopant-type/bandgap selective etching, defect-selective etching, as well as isotropic etching are discussed. The etch pit shapes and their origins are discussed. The applications of wet etching techniques to characterize crystal polarity and defect density/distribution are reviewed. Additional applications of wet etching for device fabrication, such as producing crystallographic etch profiles, are also reviewed.

680 citations

Journal ArticleDOI
TL;DR: In situ micromachining can be used to simultaneously position and define support particles, convective transport channels, an inlet distribution network of channels, and outlet channels in multiple chromatography columns on a single quartz wafer to the level of a few tenths of a micrometer.
Abstract: This paper shows that in situ micromachining can be used to simultaneously position and define (i) support particles, (ii) convective transport channels, (iii) an inlet distribution network of channels, and (iv) outlet channels in multiple chromatography columns on a single quartz wafer to the level of a few tenths of a micrometer. Stationary phases were bonded to 5 × 5 × 10 μm collocated monolith support structures separated by rectangular channels 1.5 μm wide and 10 μm deep with a low degree of deviation of channel width between the top and bottom of channels. High aspect ratio microfabrication can only be achieved with deep reactive ion etching. The volume of a 150 μm × 4.5 cm column was 18 nL. Column efficiency was evaluated in the capillary electrochromatography (CEC) mode using rhodamine 123 and a hydrocarbon stationary phase. Plate heights in these columns were typically 0.6 μm in the nonretained and 1.3 μm in the retained modes of operation. Columns were designed to have identical mobile-phase vel...

421 citations

Journal ArticleDOI
TL;DR: In this article, an out-of-plane hollow microneedles are fabricated using a sequence of deep-reactive ion etching (DRIE), anisotropic wet etching and conformal thin film deposition.
Abstract: This paper presents a novel process for the fabrication of out-of-plane hollow microneedles in silicon. The fabrication method consists of a sequence of deep-reactive ion etching (DRIE), anisotropic wet etching and conformal thin film deposition, and allows needle shapes with different, lithography-defined tip curvature. In this study, the length of the needles varied between 150 and 350 micrometers. The widest dimension of the needle at its base was 250 /spl mu/m. Preliminary application tests of the needle arrays show that they are robust and permit skin penetration without breakage. Transdermal water loss measurements before and after microneedle skin penetration are reported. Drug delivery is increased approximately by a factor of 750 in microneedle patch applications with respect to diffusion alone. The feasibility of using the microneedle array as a blood sampler on a capillary electrophoresis chip is demonstrated.

410 citations

Journal ArticleDOI
TL;DR: In this article, a low cost nanosphere lithography method for patterning and generation of semiconductor nanostructures provides a potential alternative to the conventional top-down fabrication techniques.
Abstract: A low cost nanosphere lithography method for patterning and generation of semiconductor nanostructures provides a potential alternative to the conventional top-down fabrication techniques. Forests of silicon pillars of sub-500 nm diameter and with an aspect ratio up to 10 were fabricated using a combination of the nanosphere lithography and deep reactive ion etching techniques. The nanosphere etch mask coated silicon substrates were etched using oxygen plasma and a time-multiplexed 'Bosch' process to produce nanopillars of different length, diameter and separation. Scanning electron microscopy data indicate that the silicon etch rates with the nanoscale etch masks decrease linearly with increasing aspect ratio of the resulting etch structures.

302 citations

Journal ArticleDOI
TL;DR: Different processes involving an inductively coupled plasma reactor either for deep reactive ion etching or for isotropic etching of silicon for photonic MEMS application is presented.
Abstract: Different processes involving an inductively coupled plasma reactor are presented either for deep reactive ion etching or for isotropic etching of silicon. On one hand, high aspect ratio microstructures with aspect ratio up to 107 were obtained on sub-micron trenches. Application to photonic MEMS is presented. Isotropic etching is also used either alone or in combination with anisotropic etching to realize various 3D shapes.

301 citations


Network Information
Related Topics (5)
Nanowire
52K papers, 1.5M citations
81% related
Thin film
275.5K papers, 4.5M citations
81% related
Silicon
196K papers, 3M citations
81% related
Transistor
138K papers, 1.4M citations
79% related
Carbon nanotube
109K papers, 3.6M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202327
202239
202135
202046
201954
201875