scispace - formally typeset
Search or ask a question
Topic

Deflection (engineering)

About: Deflection (engineering) is a research topic. Over the lifetime, 30862 publications have been published within this topic receiving 298849 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a modular model consisting of three sub-models is presented to predict railway traffic induced vibrations if a new railway line is to be built in densely populated areas such as the Netherlands.

115 citations

Journal Article
TL;DR: The ILLI-PAVE structural model as mentioned in this paper considers nonlinear, stress-dependent resilient modulus material models and failure criteria for granular materials and fine-grained soils for typical flexible pavements.
Abstract: In a mechanistic design procedure a structural model is used to predict pavement responses (stresses, strains, displacements). The ILLI-PAVE structural model considers nonlinear, stress-dependent resilient modulus material models and failure criteria for granular materials and fine-grained soils. The computational techniques of the ILLI-PAVE computer program are too costly, complex, and cumbersome to be used for routine design. To incorporate ILLI-PAVE structural model concepts into a mechanistic design concept, simplified analysis algorithms that reliably predict ILLI-PAVE response solutions for typical flexible pavements are needed. ILLI-PAVE-based design algorithms for conventional flexible pavements asphalt concrete (AC) surface plus granular base and subbase are presented for AC radial strain, surface deflection, subgrade deviator stress, subgrade deviator stress ratio, subgrade vertical strain, and subgrade deflection. Pertinent design algorithm inputs are AC thickness, AC modulus, granular layer thickness, and subgrade resilient modulus (E sub Ri). Additional algorithms relating AC radial strain and subgrade deviator stress ratio and surface deflection are also presented. The algorithms are sufficiently accurate for inclusion in mechanistic design procedures.

115 citations

Journal ArticleDOI
TL;DR: This paper surveys and compares the conceptual ideas, key advances, and applicable scopes, and open problems of the state-of-the-art kinetostatic and dynamic modeling methods for compliant mechanisms in terms of small and large deflections.
Abstract: Flexure-based compliant mechanisms are becoming increasingly promising in precision engineering, robotics, and other applications due to the excellent advantages of no friction, no backlash, no wear, and minimal requirement of assembly. Because compliant mechanisms have inherent coupling of kinematic-mechanical behaviors with large deflections and/or complex serial-parallel configurations, the kinetostatic and dynamic analyses are challenging in comparison to their rigid-body counterparts. To address these challenges, a variety of techniques have been reported in a growing stream of publications. This paper surveys and compares the conceptual ideas, key advances, and applicable scopes, and open problems of the state-of-the-art kinetostatic and dynamic modeling methods for compliant mechanisms in terms of small and large deflections. Future challenges are discussed and new opportunities for extended study are highlighted as well. The presented review provides a guide on how to select suitable modeling approaches for those engaged in the field of compliant mechanisms.

114 citations

Journal ArticleDOI
TL;DR: In this paper, the free vibration analysis of functionally graded graphene platelets reinforced composite (FG-GPLRC) viscoelastic annular plate resting on the visco-Pasternak foundation and subjected to the nonlinear temperature gradient and mechanical loading within the framework of higher-order shear deformation theory (HSDT) was performed.
Abstract: This is the first research on the free vibration analysis of functionally graded graphene platelets reinforced composite (FG-GPLRC) viscoelastic annular plate resting on the visco-Pasternak foundation and subjected to the nonlinear temperature gradient and mechanical loading within the framework of higher-order shear deformation theory (HSDT). Hamilton's principle is employed to establish governing equations within the framework of HSDT. In this paper, viscoelastic properties are modeled according to Kelvin-Voigt viscoelasticity. The deflection as the function of time can be solved by the fourth-order Runge-Kutta numerical method. Generalized differential quadrature method (GDQM) is applied to obtain a numerical solution. Numerical results are compared with those published in the literature to examine the accuracy and validity of the applied approach. A comprehensive parametric study is accomplished to reveal the influence of the stiffness of the substrate, patterns of temperature rise, axial load, damper and viscoelasticity coefficient, weight fraction and distribution patterns of GPLs and geometric dimensions of GPLs on the frequency response of the structure. The results revealed that applying sinusoidal temperature rise and locating more square-shaped GPLs in the vicinity of the top and bottom surfaces have important effect of the highest natural frequency and buckling load of the FG-GPLRC viscoelastic structure.

114 citations

Journal ArticleDOI
TL;DR: In this paper, a new anisotropic beam finite element for composite wind turbine blades is developed and implemented into the aeroelastic nonlinear multibody code, HAWC2, intended to be used to investigate if use of a material layup in wind turbine blade can be tailored for improved performance such as reduction of loads and/or increased power capture.

114 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
89% related
Beam (structure)
155.7K papers, 1.4M citations
87% related
Numerical analysis
52.2K papers, 1.2M citations
86% related
Ultimate tensile strength
129.2K papers, 2.1M citations
84% related
Composite number
103.4K papers, 1.2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202247
20211,006
20201,140
20191,262
20181,195
20171,215