scispace - formally typeset
Search or ask a question
Topic

Deglaciation

About: Deglaciation is a research topic. Over the lifetime, 6301 publications have been published within this topic receiving 300718 citations.


Papers
More filters
Journal ArticleDOI
01 Dec 1989-Nature
TL;DR: In this paper, a global oxygen isotope record for ocean water has been calculated from the Barbados sea level curve, allowing separation of the ice volume component common to all isotope records measured in deep-sea cores.
Abstract: Coral reefs drilled offshore of Barbados provide the first continuous and detailed record of sea level change during the last deglaciation. The sea level was 121 ± 5 metres below present level during the last glacial maximum. The deglacial sea level rise was not monotonic; rather, it was marked by two intervals of rapid rise. Varying rates of melt-water discharge to the North Atlantic surface ocean dramatically affected North Atlantic deep-water production and oceanic oxygen isotope chemistry. A global oxygen isotope record for ocean water has been calculated from the Barbados sea level curve, allowing separation of the ice volume component common to all oxygen isotope records measured in deep-sea cores.

4,483 citations

Journal ArticleDOI
07 Aug 2009-Science
TL;DR: The responses of the Northern and Southern Hemispheres differed significantly, which reveals how the evolution of specific ice sheets affected sea level and provides insight into how insolation controlled the deglaciation.
Abstract: We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ~14.5 ka.

2,691 citations

Journal ArticleDOI
TL;DR: The impact of the changing surface ice load upon both Earth's shape and gravitational field, as well as upon sea-level history, have come to be measurable using a variety of geological and geophysical techniques.
Abstract: ▪ Abstract The 100 kyr quasiperiodic variation of continental ice cover, which has been a persistent feature of climate system evolution throughout the most recent 900 kyr of Earth history, has occurred as a consequence of changes in the seasonal insolation regime forced by the influence of gravitational n-body effects in the Solar System on the geometry of Earth's orbit around the Sun. The impacts of the changing surface ice load upon both Earth's shape and gravitational field, as well as upon sea-level history, have come to be measurable using a variety of geological and geophysical techniques. These observations are invertible to obtain useful information on both the internal viscoelastic structure of the solid Earth and on the detailed spatiotemporal characteristics of glaciation history. This review focuses upon the most recent advances that have been achieved in each of these areas, advances that have proven to be central to the construction of the refined model of the global process of glacial isos...

2,333 citations

Journal ArticleDOI
22 Apr 2004-Nature
TL;DR: It is found that the meridional overturning was nearly, or completely, eliminated during the coldest deglacial interval in the North Atlantic region, beginning with the catastrophic iceberg discharge Heinrich event H1, 17,500’yr ago, and declined sharply but briefly into the Younger Dryas cold event, about 12,700 yr ago.
Abstract: The Atlantic meridional overturning circulation is widely believed to affect climate. Changes in ocean circulation have been inferred from records of the deep water chemical composition derived from sedimentary nutrient proxies1, but their impact on climate is difficult to assess because such reconstructions provide insufficient constraints on the rate of overturning2. Here we report measurements of 231Pa/230Th, a kinematic proxy for the meridional overturning circulation, in a sediment core from the subtropical North Atlantic Ocean. We find that the meridional overturning was nearly, or completely, eliminated during the coldest deglacial interval in the North Atlantic region, beginning with the catastrophic iceberg discharge Heinrich event H1, 17,500 yr ago, and declined sharply but briefly into the Younger Dryas cold event, about 12,700 yr ago. Following these cold events, the 231Pa/230Th record indicates that rapid accelerations of the meridional overturning circulation were concurrent with the two strongest regional warming events during deglaciation. These results confirm the significance of variations in the rate of the Atlantic meridional overturning circulation for abrupt climate changes.

1,875 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a series of maps that estimate the areas of exposed land in the Indo-Australian region during periods of the Pleistocene when sea levels were below present day levels.
Abstract: Aim Glaciation and deglaciation and the accompanying lowering and rising of sea levels during the late Pleistocene are known to have greatly affected land mass configurations in Southeast Asia. The objective of this report is to provide a series of maps that estimate the areas of exposed land in the Indo-Australian region during periods of the Pleistocene when sea levels were below present day levels. Location The maps presented here cover tropical Southeast Asia and Austral-Asia. The east–west coverage extends 8000 km from Australia to Sri Lanka. The north–south coverage extends 5000 km from Taiwan to Australia. Methods Present-day bathymetric depth contours were used to estimate past shore lines and the locations of the major drowned river systems of the Sunda and Sahul shelves. The timing of sea level changes associated with glaciation over the past 250,000 years was taken from multiple sources that, in some cases, account for tectonic uplift and subsidence during the period in question. Results This report provides a series of maps that estimate the areas of exposed land in the Indo-Australian region during periods of 17,000, 150,000 and 250,000 years before present. The ancient shorelines are based on present day depth contours of 10, 20, 30, 40, 50, 75, 100 and 120 m. On the maps depicting shorelines at 75, 100 and 120 m below present levels the major Pleistocene river systems of the Sunda and Sahul shelves are depicted. Estimates of the number of major sea level fluctuation events and the duration of time that sea levels were at or below the illustrated level are provided. Main conclusions Previous reconstructions of sea-level change during the Pleistocene have emphasized the maximum lows. The perspective provided here emphasizes that sea levels were at their maximum lows for relatively short periods of time but were at or below intermediate levels (e.g. at or below 40 m below present-day levels) for more than half of each of the time periods considered.

1,766 citations


Network Information
Related Topics (5)
Holocene
24.4K papers, 830.7K citations
95% related
Glacial period
27.3K papers, 1.1M citations
95% related
Ice sheet
16.6K papers, 781.2K citations
92% related
Subduction
22.4K papers, 1.1M citations
83% related
Sea ice
24.3K papers, 876.6K citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023272
2022531
2021226
2020243
2019247
2018237