scispace - formally typeset
Search or ask a question
Topic

Dehalococcoides

About: Dehalococcoides is a research topic. Over the lifetime, 551 publications have been published within this topic receiving 28323 citations.


Papers
More filters
Journal ArticleDOI
06 Jun 1997-Science
TL;DR: Growth of strain 195 was resistant to ampicillin and vancomycin; its cell wall did not react with a peptidoglycan-specific lectin and its ultrastructure resembled S-layers of Archaea.
Abstract: Tetrachloroethene is a prominent groundwater pollutant that can be reductively dechlorinated by mixed anaerobic microbial populations to the nontoxic product ethene. Strain 195, a coccoid bacterium that dechlorinates tetrachloroethene to ethene, was isolated and characterized. Growth of strain 195 with H2 and tetrachloroethene as the electron donor and acceptor pair required extracts from mixed microbial cultures. Growth of strain 195 was resistant to ampicillin and vancomycin; its cell wall did not react with a peptidoglycan-specific lectin and its ultrastructure resembled S-layers of Archaea. Analysis of the 16S ribosomal DNA sequence of strain 195 indicated that it is a eubacterium without close affiliation to any known groups.

1,146 citations

Journal ArticleDOI
03 Jul 2003-Nature
TL;DR: An unusual, strictly anaerobic bacterium is described that destroys dichloroethenes and vinyl chloride as part of its energy metabolism, generating environmentally benign products (biomass, ethene and inorganic chloride).
Abstract: Tetrachloroethene (PCE) and trichloroethene (TCE) are ideal solvents for numerous applications, and their widespread use makes them prominent groundwater pollutants. Even more troubling, natural biotic and abiotic processes acting on these solvents lead to the accumulation of toxic intermediates (such as dichloroethenes) and carcinogenic intermediates (such as vinyl chloride). Vinyl chloride was found in at least 496 of the 1,430 National Priorities List sites identified by the US Environmental Protection Agency, and its precursors PCE and TCE are present in at least 771 and 852 of these sites, respectively. Here we describe an unusual, strictly anaerobic bacterium that destroys dichloroethenes and vinyl chloride as part of its energy metabolism, generating environmentally benign products (biomass, ethene and inorganic chloride). This organism might be useful for cleaning contaminated subsurface environments and restoring drinking-water reservoirs.

547 citations

Journal ArticleDOI
TL;DR: Biostimulation and bioaugmentation to dechlorinate tetrachloroethene (PCE) to ethene at Kelly Air Force Base confirmed that organisms in the KB-1 culture populated the PTA aquifer and contributed to the stimulation of dechlorination beyond cDCE to e thene.
Abstract: A laboratory microcosm study and a pilot scale field test were conducted to evaluate biostimulation and bioaugmentation to dechlorinate tetrachloroethene (PCE) to ethene at Kelly Air Force Base. The site groundwater contained about 1 mg/L of PCE and lower amounts of trichloroethene (TCE) and cis-1,2-dichloroethene (cDCE). Laboratory microcosms inoculated with soil and groundwater from the site exhibited partial dechlorination of TCE to cDCE when amended with lactate or methanol. Following the addition of a dechlorinating enrichment culture, KB-1, the chlorinated ethenes in the microcosms were completely converted to ethene. The KB-1 culture is a natural dechlorinating microbial consortium that contains phylogenetic relatives of Dehalococcoides ethenogenes. The ability of KB-1 to stimulate biodegradation of chlorinated ethenes in situ was explored using a closed loop recirculation cell with a pore volume of approximately 64 000 L. The pilot test area (PTA) groundwater was first amended with methanol and ac...

505 citations

Journal ArticleDOI
TL;DR: This contribution provides an update on the current knowledge on metabolic and phylogenetic diversity of anaerobic microorganisms that are capable of dehalogenating--or completely mineralizing--halogenated hydrocarbons by fermentative, oxidative, or reductive pathways.
Abstract: ▪ Abstract The natural production and anthropogenic release of halogenated hydrocarbons into the environment has been the likely driving force for the evolution of an unexpectedly high microbial capacity to dehalogenate different classes of xenobiotic haloorganics. This contribution provides an update on the current knowledge on metabolic and phylogenetic diversity of anaerobic microorganisms that are capable of dehalogenating—or completely mineralizing—halogenated hydrocarbons by fermentative, oxidative, or reductive pathways. In particular, research of the past decade has focused on halorespiring anaerobes, which couple the dehalogenation by dedicated enzyme systems to the generation of energy by electron transport–driven phosphorylation. Significant advances in the biochemistry and molecular genetics of degradation pathways have revealed mechanistic and structural similarities between dehalogenating enzymes from phylogenetically distinct anaerobes. The availability of two almost complete genome sequenc...

499 citations

Journal ArticleDOI
TL;DR: It is demonstrated that members of the Dehalococcoides group are widely distributed in nature and can be found in a variety of geological formations and in different climatic zones and the association of these organisms with full dechlorination of chloroethenes suggests that they are promising candidates for engineered bioremediation and may be important contributors to natural attenuation of chlorine.
Abstract: The environmental distribution of Dehalococcoides group organisms and their association with chloroethene-contaminated sites were examined. Samples from 24 chloroethene-dechlorinating sites scattered throughout North America and Europe were tested for the presence of members of the Dehalococcoides group by using a PCR assay developed to detect Dehalococcoides 16S rRNA gene (rDNA) sequences. Sequences identified by sequence analysis as sequences of members of the Dehalococcoides group were detected at 21 sites. Full dechlorination of chloroethenes to ethene occurred at these sites. Dehalococcoides sequences were not detected in samples from three sites at which partial dechlorination of chloroethenes occurred, where dechlorination appeared to stop at 1,2-cis-dichloroethene. Phylogenetic analysis of the 16S rDNA amplicons confirmed that Dehalococcoides sequences formed a unique 16S rDNA group. These 16S rDNA sequences were divided into three subgroups based on specific base substitution patterns in variable regions 2 and 6 of the Dehalococcoides 16S rDNA sequence. Analyses also demonstrated that specific base substitution patterns were signature patterns. The specific base substitutions distinguished the three sequence subgroups phylogenetically. These results demonstrated that members of the Dehalococcoides group are widely distributed in nature and can be found in a variety of geological formations and in different climatic zones. Furthermore, the association of these organisms with full dechlorination of chloroethenes suggests that they are promising candidates for engineered bioremediation and may be important contributors to natural attenuation of chloroethenes.

496 citations

Network Information
Related Topics (5)
Denitrification
23.7K papers, 663.3K citations
81% related
Anaerobic digestion
21.8K papers, 575K citations
79% related
Wastewater
92.5K papers, 1.2M citations
77% related
Dissolved organic carbon
14.8K papers, 641K citations
75% related
Sewage treatment
47.8K papers, 677.2K citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202314
202253
202126
202020
201918
201825