scispace - formally typeset
Search or ask a question

Showing papers on "Dehydrogenation published in 2021"


Journal ArticleDOI
TL;DR: In this article, a review describes recent advances in the fundamental understandings of the Propane Dehydrogenation (PDH) process in terms of emerging technologies, catalyst development and new chemistry in regulating the catalyst structures and inhibiting the catalyst deactivation.
Abstract: Propylene is an important building block for enormous petrochemicals including polypropylene, propylene oxide, acrylonitrile and so forth. Propane dehydrogenation (PDH) is an industrial technology for direct propylene production which has received extensive attention in recent years. With the development of dehydrogenation technologies, the efficient adsorption/activation of propane and subsequential desorption of propylene on the surfaces of heterogeneous catalysts remain scientifically challenging. This review describes recent advances in the fundamental understandings of the PDH process in terms of emerging technologies, catalyst development and new chemistry in regulating the catalyst structures and inhibiting the catalyst deactivation. The active sites, reaction pathways and deactivation mechanisms of PDH over metals and metal oxides as well as their dependent factors are also analysed and discussed, which is expected to enable efficient catalyst design for minimizing the reaction barriers and controlling the selectivity towards propylene. The challenges and perspectives of PDH over heterogeneous catalysts are also proposed for further development.

222 citations


Journal ArticleDOI
TL;DR: An overview of the recent achievements in nanocatalysis of hydrogen production from liquid-phase hydrogen storage materials including metal-boron hydrides, borane-nitrogen compounds, and liquid organic hydride is provided in this article.
Abstract: Hydrogen is the most effective and sustainable carrier of clean energy, and liquid-phase hydrogen storage materials with high hydrogen content, reversibility and good dehydrogenation kinetics are promising in view of "hydrogen economy". Efficient, low-cost, safe and selective hydrogen generation from chemical storage materials remains challenging, however. In this Review article, an overview of the recent achievements is provided, addressing the topic of nanocatalysis of hydrogen production from liquid-phase hydrogen storage materials including metal-boron hydrides, borane-nitrogen compounds, and liquid organic hydrides. The state-of-the-art catalysts range from high-performance nanocatalysts based on noble and non-noble metal nanoparticles (NPs) to emerging single-atom catalysts. Key aspects that are discussed include insights into the dehydrogenation mechanisms, regenerations from the spent liquid chemical hydrides, and tandem reactions using the in situ generated hydrogen. Finally, challenges, perspectives, and research directions for this area are envisaged.

150 citations


Journal ArticleDOI
25 Jun 2021-Science
TL;DR: In this paper, the theory-led discovery of a rhodium-copper (RhCu) single-atom-alloy catalyst for propane dehydrogenation to propene was reported.
Abstract: The complexity of heterogeneous catalysts means that a priori design of new catalytic materials is difficult, but the well-defined nature of single-atom–alloy catalysts has made it feasible to perform unambiguous theoretical modeling and precise surface science experiments. Herein we report the theory-led discovery of a rhodium-copper (RhCu) single-atom–alloy catalyst for propane dehydrogenation to propene. Although Rh is not generally considered for alkane dehydrogenation, first-principles calculations revealed that Rh atoms disperse in Cu and exhibit low carbon-hydrogen bond activation barriers. Surface science experiments confirmed these predictions, and together these results informed the design of a highly active, selective, and coke-resistant RhCu nanoparticle catalyst that enables low-temperature nonoxidative propane dehydrogenation.

140 citations


Journal ArticleDOI
Yihu Dai1, Xing Gao1, Qiaojuan Wang1, Xiaoyue Wan1, Chunmei Zhou1, Yanhui Yang1 
TL;DR: In this article, the progress of catalytic non-oxidative direct dehydrogenation of light alkanes has been summarized for different classes of the most promising catalysts in the selective degradation of ethane toethylene and propane-to-propylene, their syntheses, structural information, catalytic properties and mechanisms are comparatively summarized.
Abstract: Catalytic non-oxidative direct dehydrogenation of light alkanes serves as an effective reinforcement to selectively produce the corresponding olefins, and the heterogeneous metals and metal oxides, not limited to the commercially used Pt- and Cr-based catalysts, are widely investigated to enhance the efficiency. In this review, we outline the progress of these dehydrogenation catalysts that have been mainly developed in the past five years. For different classes of the most-promising catalysts in the selective dehydrogenation of ethane-to-ethylene and propane-to-propylene, their syntheses, structural information, catalytic properties and mechanisms are comparatively summarized.

121 citations


Journal ArticleDOI
TL;DR: Critically analyse recent developments in the non-oxidative, oxidative, and CO2-mediated dehydrogenation of propane and isobutane to the corresponding olefins over metal oxide catalysts to ensure unambiguous comparison of catalysts developed in different studies.
Abstract: Conversion of propane or butanes from natural/shale gas into propene or butenes, which are indispensable for the synthesis of commodity chemicals, is an important environmentally friendly alternative to oil-based cracking processes. Herein, we critically analyse recent developments in the non-oxidative, oxidative, and CO2-mediated dehydrogenation of propane and isobutane to the corresponding olefins over metal oxide catalysts. Particular attention is paid to (i) comparing the developed catalysts in terms of their application potential, (ii) structure-activity-selectivity relationships for tailored catalyst design, and (iii) reaction-engineering aspects for improving product selectivity and overall process efficiency. On this basis, possible directions for further research aimed at the development of inexpensive and environmentally friendly catalysts with industrially relevant performance were identified. In addition, we provide general information regarding catalyst preparation and characterization as well as some recommendations for carrying out non-oxidative and CO2-mediated dehydrogenation reactions to ensure unambiguous comparison of catalysts developed in different studies.

113 citations


Journal ArticleDOI
02 Apr 2021-Science
TL;DR: In this article, isolated boron in a zeolite framework without such oligomers exhibits high activity and selectivity for ODHP, which also hinders full hydrolysis for BORON leaching in a humid atmosphere because of the B-O-SiO x linkage.
Abstract: Oxidative dehydrogenation of propane (ODHP) is a key technology for producing propene from shale gas, but conventional metal oxide catalysts are prone to overoxidation to form valueless CO x Boron-based catalysts were recently found to be selective for this reaction, and B-O-B oligomers are generally regarded as active centers. We show here that the isolated boron in a zeolite framework without such oligomers exhibits high activity and selectivity for ODHP, which also hinders full hydrolysis for boron leaching in a humid atmosphere because of the B-O-SiO x linkage, achieving superior durability in a long-period test. Furthermore, we demonstrate an isolated boron with a -B[OH…O(H)-Si]2 structure in borosilicate zeolite as the active center, which enables the activation of oxygen and a carbon-hydrogen bond to catalyze the ODHP.

107 citations


Journal ArticleDOI
13 May 2021-Chem
TL;DR: In this paper, a comprehensive review of homogeneous Mn-catalyzed hydrogenation and dehydrogenation reactions from the beginning of 2016 till now is provided, including the hydrogenation of unsaturated C−O, C−N, and C−C bonds, and the catalytic cascade dehydrogenative transformation of alcohols.

104 citations


Journal ArticleDOI
TL;DR: In this article, the process of glucose oxidation catalyzed by gold nanoparticles is shown to be similar to that of natural glucose oxidase, namely, a two-step reaction including the dehydrogenation of glucose and the subsequent reduction of O2 to H2O2 by two electrons.
Abstract: Au nanoparticles (NPs) have been found to be excellent glucose oxidase mimics, while the catalytic processes have rarely been studied. Here, we reveal that the process of glucose oxidation catalyzed by Au NPs is as the same as that of natural glucose oxidase, namely, a two-step reaction including the dehydrogenation of glucose and the subsequent reduction of O2 to H2O2 by two electrons. Pt, Pd, Ru, Rh, and Ir NPs can also catalyze the dehydrogenation of glucose, except that O2 is preferably reduced to H2O. By the electron transfer feature of noble metal NPs, we overcame the limitation that H2O2 must be produced in the traditional two-step glucose assay and realize the rapid colorimetric detections of glucose. Inspired by the electron transport pathway in the catalytic process of natural enzymes, noble metal NPs have also been found to mimic various enzymatic electron transfer reactions including cytochrome c, coenzymes as well as nitrobenzene reductions. Gold nanoparticles (Au NPs) with enzyme-like activities are useful glucose oxidase mimics, but the insights into the mechanism of this reaction are limited. Here, the authors show that the process of glucose oxidation by Au NPs is analogous to the one catalysed by glucose oxidase, involving dehydrogenation and oxygen reduction to H2O2; and that other noble metal NPs also catalyse glucose dehydrogenation, but oxygen is preferably reduced to water.

102 citations


Journal ArticleDOI
TL;DR: In this paper, a direct photocatalytic methane-to-ethylene conversion pathway involving the formation and dehydrogenation of alkoxy (i.e., methoxy and ethoxy) intermediates over a Pd-modified ZnO-Au hybrid catalyst was reported.
Abstract: Photocatalysis provides an intriguing approach for the conversion of methane to multicarbon (C2+) compounds under mild conditions; however, with methyl radicals as the sole reaction intermediate, the current C2+ products are dominated by ethane, with a negligible selectivity toward ethylene, which, as a key chemical feedstock, possesses higher added value than ethane. Herein, we report a direct photocatalytic methane-to-ethylene conversion pathway involving the formation and dehydrogenation of alkoxy (i.e., methoxy and ethoxy) intermediates over a Pd-modified ZnO-Au hybrid catalyst. On the basis of various in situ characterizations, it is revealed that the Pd-induced dehydrogenation capability of the catalyst holds the key to turning on the pathway. During the reaction, methane molecules are first dissociated into methoxy on the surface of ZnO under the assistance of Pd. Then these methoxy intermediates are further dehydrogenated and coupled with methyl radical into ethoxy, which can be subsequently converted into ethylene through dehydrogenation. As a result, the optimized ZnO-AuPd hybrid with atomically dispersed Pd sites in the Au lattice achieves a methane conversion of 536.0 μmol g-1 with a C2+ compound selectivity of 96.0% (39.7% C2H4 and 54.9% C2H6 in total produced C2+ compounds) after 8 h of light irradiation. This work provides fresh insight into the methane conversion pathway under mild conditions and highlights the significance of dehydrogenation for enhanced photocatalytic activity and unsaturated hydrocarbon product selectivity.

102 citations


Journal ArticleDOI
21 May 2021-Science
TL;DR: In this paper, molecular engineering of fluorenone enables the alcohol electro-oxidation needed for reversible ketone hydrogenation and dehydrogenation at room temperature without the use of a catalyst.
Abstract: Aqueous redox flow batteries with organic active materials offer an environmentally benign, tunable, and safe route to large-scale energy storage. Development has been limited to a small palette of organics that are aqueous soluble and tend to display the necessary redox reversibility within the water stability window. We show how molecular engineering of fluorenone enables the alcohol electro-oxidation needed for reversible ketone hydrogenation and dehydrogenation at room temperature without the use of a catalyst. Flow batteries based on these fluorenone derivative anolytes operate efficiently and exhibit stable long-term cycling at ambient and mildly increased temperatures in a nondemanding environment. These results expand the palette to include reversible ketone to alcohol conversion but also suggest the potential for identifying other atypical organic redox couple candidates.

98 citations


Journal ArticleDOI
TL;DR: In this paper, a single-atom Fe supported by nitrogen-doped carbon (Fe1/N-C) was used for selective hydrogenation and transfer hydrogenation of nitrobenzene to aniline at different temperatures.
Abstract: The design of non-noble metal heterogeneous catalyst with superior performance for selective hydrogenation or transfer hydrogenation of nitroarenes to amines is significant but challenging. Herein, a single-atom Fe supported by nitrogen-doped carbon (Fe1/N-C) catalyst is reported. The Fe1/N-C sample shows superior performances for the selective hydrogenation and transfer hydrogenation of nitrobenzene to aniline at different temperatures. Density functional theory (DFT) calculations show that the superior catalytic activity for the selective hydrogenation at lower temperatures could be attributed to the effective activation of the reactant and intermediates by the Fe1/N-C. Moreover, the excellent performance of Fe1/N-C for the selective transfer hydrogenation could be attributed to that the reaction energy barrier for dehydrogenation of isopropanol can be overcome by elevated temperatures.

Journal ArticleDOI
19 Mar 2021-Science
TL;DR: In this article, the authors used atomic layer deposition to grow In2O3 over Pt/Al 2O3, and this nanostructure kinetically couples the domains through surface hydrogen atom transfer, resulting in propane dehydrogenation (PDH) to propylene by platinum, then selective hydrogen combustion (HOC) without excessive hydrocarbon combustion.
Abstract: Tandem catalysis couples multiple reactions and promises to improve chemical processing, but precise spatiotemporal control over reactive intermediates remains elusive. We used atomic layer deposition to grow In2O3 over Pt/Al2O3, and this nanostructure kinetically couples the domains through surface hydrogen atom transfer, resulting in propane dehydrogenation (PDH) to propylene by platinum, then selective hydrogen combustion by In2O3, without excessive hydrocarbon combustion. Other nanostructures, including platinum on In2O3 or platinum mixed with In2O3, favor propane combustion because they cannot organize the reactions sequentially. The net effect is rapid and stable oxidative dehydrogenation of propane at high per-pass yields exceeding the PDH equilibrium. Tandem catalysis using this nanoscale overcoating geometry is validated as an opportunity for highly selective catalytic performance in a grand challenge reaction.

Journal ArticleDOI
09 Jul 2021-Science
TL;DR: In this paper, a silica-supported platinum-tin (Pt1Sn1) nanoparticles were used for purpose-on-purpose propylene production through nonoxidative propane dehydrogenation (PDH).
Abstract: Intentional ("on-purpose") propylene production through nonoxidative propane dehydrogenation (PDH) holds great promise for meeting the increasing global demand for propylene. For stable performance, traditional alumina-supported platinum-based catalysts require excess tin and feed dilution with hydrogen; however, this reduces per-pass propylene conversion and thus lowers catalyst productivity. We report that silica-supported platinum-tin (Pt1Sn1) nanoparticles ( 99%). Atomic mixing of Pt and Sn in the precursor is preserved upon reduction and during catalytic operation. The benign interaction of these nanoparticles with the silicon dioxide support does not lead to Pt-Sn segregation and formation of a tin oxide phase that can occur over traditional catalyst supports.

Journal ArticleDOI
TL;DR: In this paper, a fully exposed Pt3 cluster was constructed on the defective nanodiamond@graphene (ND@G) by the assistance of atomically dispersed Sn promoters, and correlated the n-butane direct dehydrogenation (DDH) activity with the average coordination number (CN) of Pt-Pt bond in Pt NP, Pt 3 cluster and Pt SA.
Abstract: Metal nanoparticle (NP), cluster and isolated metal atom (or single atom, SA) exhibit different catalytic performance in heterogeneous catalysis originating from their distinct nanostructures. To maximize atom efficiency and boost activity for catalysis, the construction of structure–performance relationship provides an effective way at the atomic level. Here, we successfully fabricate fully exposed Pt3 clusters on the defective nanodiamond@graphene (ND@G) by the assistance of atomically dispersed Sn promoters, and correlated the n-butane direct dehydrogenation (DDH) activity with the average coordination number (CN) of Pt-Pt bond in Pt NP, Pt3 cluster and Pt SA for fundamentally understanding structure (especially the sub-nano structure) effects on n-butane DDH reaction at the atomic level. The as-prepared fully exposed Pt3 cluster catalyst shows higher conversion (35.4%) and remarkable alkene selectivity (99.0%) for n-butane direct DDH reaction at 450 °C, compared to typical Pt NP and Pt SA catalysts supported on ND@G. Density functional theory calculation (DFT) reveal that the fully exposed Pt3 clusters possess favorable dehydrogenation activation barrier of n-butane and reasonable desorption barrier of butene in the DDH reaction. Direct dehydrogenation has been a thematic research area resulting from the energy shortage and petroleum gas upgrading scenario. Here, the authors fabricate fully exposed Pt3 clusters and correlate dehydrogenation activity with average coordination number of Pt-Pt bond.

Journal ArticleDOI
11 Feb 2021-Chem
TL;DR: In this article, a single-site [PtZn4] catalyst by assembling atomically ordered intermetallic alloy (IMA) as a selective and ultrastable PDH catalyst was described.

Journal ArticleDOI
TL;DR: In this paper, instead of the competitive adsorption of organic molecules and HMF on the metal sites, the OH- can fill into oxygen vacancy prior to couple with organic molecules through lattice oxygen oxidation reaction process, which could accelerate the rate-determining step of the dehydrogenation of 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) intermediates.
Abstract: The electrooxidation of 5-hydroxymethylfurfural (HMF) offers a promising green route to attain high-value chemicals from biomass. The HMF electrooxidation reaction (HMFOR) is a complicated process involving the combined adsorption and coupling of organic molecules and OH- on the electrode surface. An in-depth understanding of these adsorption sites and reaction processes on electrocatalysts is fundamentally important. Herein, the adsorption behavior of HMF and OH- , and the role of oxygen vacancy on Co3 O4 are initially unraveled. Correspondingly, instead of the competitive adsorption of OH- and HMF on the metal sites, it is observed that the OH- can fill into oxygen vacancy (Vo) prior to couple with organic molecules through lattice oxygen oxidation reaction process, which could accelerate the rate-determining step of the dehydrogenation of 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) intermediates. With the modulated adsorption sites, the as-designed Vo-Co3 O4 shows excellent activity for HMFOR with the earlier potential of 90 and 120 mV at 10 mA cm-2 in 1 m KOH and 1 m PBS solution. This work sheds insight on the catalytic mechanism of oxygen vacancy, which benefits designing a novel electrocatalysts to modulate the multi-molecules combined adsorption behaviors.

Journal ArticleDOI
TL;DR: In this paper, a review of light alkane dehydrogenation to mono-olefins, and the progress made in the development of catalysts and reactors, and a new understanding of reaction mechanism as well as its guiding role in the developing of catalyst and reactor is presented.
Abstract: In the past several decades, light alkane dehydrogenation to mono-olefins, especially propane dehydrogenation to propylene has gained widespread attention and much development in the field of research and commercial application. Under suitable conditions, the supported Pt–Sn and CrOx catalysts widely used in industry exhibit satisfactory dehydrogenation activity and selectivity. However, the high cost of Pt and the potential environmental problems of CrOx have driven researchers to improve the coking and sintering resistance of Pt catalysts, and to find new non-noble metal and environment-friendly catalysts. As for the development of the reactor, it should be noted that low operation pressure is beneficial for improving the single-pass conversion, decreasing the amount of unconverted alkane recycled back to the reactor, and reducing the energy consumption of the whole process. Therefore, the research direction of reactor improvement is towards reducing the pressure drop. This review is aimed at introducing the characteristics of the dehydrogenation reaction, the progress made in the development of catalysts and reactors, and a new understanding of reaction mechanism as well as its guiding role in the development of catalyst and reactor.

Journal ArticleDOI
TL;DR: This review surveyed and compared the preparation methods of the boron- and carbon-based catalysts and their characterization, their performance in theODH of light alkanes, and the mechanistic issues of the ODH including the identification of the possible active sites and the exploration of the underlying mechanisms.
Abstract: Metal-free boron- and carbon-based catalysts have shown both great fundamental and practical value in oxidative dehydrogenation (ODH) of light alkanes. In particular, boron-based catalysts show a superior selectivity toward olefins, excellent stability and atom-economy to valuable carbon-based products by minimizing CO2 emission, which are highly promising in future industrialization. The carbonaceous catalysts also exhibited impressive behavior in the ODH of light alkanes helped along by surface oxygen-containing functional groups. This review surveyed and compared the preparation methods of the boron- and carbon-based catalysts and their characterization, their performance in the ODH of light alkanes, and the mechanistic issues of the ODH including the identification of the possible active sites and the exploration of the underlying mechanisms. We discussed different boron-based materials and established versatile methodologies for the investigation of active sites and reaction mechanisms. We also elaborated on the similarities and differences in catalytic and kinetic behaviors, and reaction mechanisms between boron- and carbon-based metal-free materials. A perspective of the potential issues of metal-free ODH catalytic systems in terms of their rational design and their synergy with reactor engineering was sketched.

Journal ArticleDOI
TL;DR: In this paper, a novel graphene-guided nucleation and growth process was developed for the preparation of N-doped Nb2O5 nanorods that enable remarkably improved hydrogen storage properties of MgH2.

Journal ArticleDOI
TL;DR: In this paper, a review of catalytic and heterogeneous catalysts for CO2 hydrogenation is presented, and an analysis for practical applications from the engineering viewpoint is provided with concluding remarks and an outlook for future challenges and R&D directions.
Abstract: Formic acid has been proposed as a hydrogen energy carrier because of its many desirable properties, such as low toxicity and flammability, and a high volumetric hydrogen storage capacity of 53 g H2 L−1 under ambient conditions. Compared to liquid hydrogen, formic acid is thus more convenient and safer to store and transport. Converting formic acid to power has been demonstrated in direct formic acid fuel cells and in dehydrogenation reactions to supply hydrogen for polymer electrolyte membrane fuel cells. However, to enable a complete cycle for the storage and utilization of low-carbon or carbon-free electricity, processes for the hydrogenation and electrochemical reduction of carbon dioxide (CO2) to formic acid, namely power to formic acid, are needed. In this review, representative homogenous and heterogeneous catalysts for CO2 hydrogenation will be summarized. Apart from catalytic systems for CO2 hydrogenation, a wide range of catalysts, electrodes, and reactor systems for the electrochemical CO2 reduction reaction (eCO2RR) will be discussed. An analysis for practical applications from the engineering viewpoint will be provided with concluding remarks and an outlook for future challenges and R&D directions.

Journal ArticleDOI
TL;DR: In this paper, the authors show that when doped in a carbon matrix, sulfur can enhance the adhesion strength and eventually suppress the metal sintering, which improves the performance of propane dehydrogenation by strong chemical/electronic interactions.
Abstract: Supported metal nanoclusters consisting of several dozen atoms are highly attractive for heterogeneous catalysis with unique catalytic properties. However, the metal nanocluster catalysts face the challenges of thermal sintering and consequent deactivation owing to the loss of metal surface areas particularly in the applications of high-temperature reactions. Here, we report that sulfur—a documented poison reagent for metal catalysts—when doped in a carbon matrix can stabilize ~1 nanometer metal nanoclusters (Pt, Ru, Rh, Os, and Ir) at high temperatures up to 700 °C. We find that the enhanced adhesion strength between metal nanoclusters and the sulfur-doped carbon support, which arises from the interfacial metal-sulfur bonding, greatly retards both metal atom diffusion and nanocluster migration. In catalyzing propane dehydrogenation at 550 °C, the sulfur-doped carbon supported Pt nanocluster catalyst with interfacial electronic effects exhibits higher selectivity to propene as well as more stable durability than sulfur-free carbon supported catalysts. The sulfur is a documented poison reagent for metal catalysts. Here the authors show when doped in a carbon matrix, sulfur can enhance the adhesion strength and eventually suppress the metal sintering, which improve the performance of propane dehydrogenation by strong chemical/electronic interactions.

Journal ArticleDOI
TL;DR: In this article, the use of soft oxidants, such as CO2, N2O, S-conta, and S-ContaO 2, was used for the O2-assisted dehydrogenation of propane to propylene.
Abstract: Oxidative dehydrogenation of propane to propylene can be achieved using conventional, oxygen-assisted dehydrogenation of propane (O2–ODHP) or via the use of soft oxidants, such as CO2, N2O, S-conta...

Journal ArticleDOI
TL;DR: In this article, a single atomically dispersed platinum on ruthenium oxide (Pt1/RuO2) was synthesized using a simple impregnation-adsorption method.
Abstract: Single-atom catalysts have been widely investigated for several electrocatalytic reactions except electrochemical alcohol oxidation. Herein, we synthesize atomically dispersed platinum on ruthenium oxide (Pt1/RuO2) using a simple impregnation-adsorption method. We find that Pt1/RuO2 has good electrocatalytic activity towards methanol oxidation in an alkaline media with a mass activity that is 15.3-times higher than that of commercial Pt/C (6766 vs. 441 mA mg‒1Pt). In contrast, single atom Pt on carbon black is inert. Further, the mass activity of Pt1/RuO2 is superior to that of most Pt-based catalysts previously developed. Moreover, Pt1/RuO2 has a high tolerance towards CO poisoning, resulting in excellent catalytic stability. Ab initio simulations and experiments reveal that the presence of Pt‒O3f (3-fold coordinatively bonded O)‒Rucus (coordinatively unsaturated Ru) bonds with the undercoordinated bridging O in Pt1/RuO2 favors the electrochemical dehydrogenation of methanol with lower energy barriers and onset potential than those encountered for Pt‒C and Pt‒Ru. It is still challenging to engineer single-atom catalysts for electrocatalytic methanol oxidation. Here, the authors design Pt single atom supported on RuO2 for highly active methanol oxidation in contrast to the inert Pt single atom supported on carbon.

Journal ArticleDOI
TL;DR: In this paper, an atomically dispersed Ru catalyst was proposed for C-lignin hydrogenolysis via the cleavage of C-O bonds in benzodioxane linkages, giving catechols in high yields with TONs up to 345.
Abstract: C-lignin is a homo-biopolymer, being made up of caffeyl alcohol exclusively. There is significant interest in developing efficient and selective catalyst for depolymerization of C-lignin, as it represents an ideal feedstock for producing catechol derivatives. Here we report an atomically dispersed Ru catalyst, which can serve as an efficient catalyst for the hydrogenolysis of C-lignin via the cleavage of C-O bonds in benzodioxane linkages, giving catechols in high yields with TONs up to 345. A unique selectivity to propenylcatechol (77%) is obtained, which is otherwise hard to achieve, because this catalyst is capable of hydrogenolysis rather than hydrogenation. This catalyst also demonstrates good reusability in C-lignin depolymerization. Detailed investigations by model compounds concluded that the pathways involving dehydration and/or dehydrogenation reactions are incompatible routes; we deduced that caffeyl alcohol generated via concurrent C-O bonds cleavage of benzodioxane unit may act as an intermediate in the C-lignin hydrogenolysis. Current demonstration validates that atomically dispersed metals can not only catalyze small molecules reactions, but also drive the transformation of abundant and renewable biopolymer.

Journal ArticleDOI
22 Feb 2021
TL;DR: In this paper, a ruthenium 9H-acridine pincer complex was used to catalyse the additive-free dehydrogenation of neat formic acid, generating even high pressures of H2 and CO2 in a closed system.
Abstract: Formic acid (FA) is a promising hydrogen carrier that can play an instrumental role in the overall implementation of a hydrogen economy. In this regard, it is important to generate H2 gas from neat FA without any solvent and/or additive, for which existing systems are scarce. Here we report the remarkable catalytic activity of a ruthenium 9H-acridine pincer complex for this process. The catalyst is unusually stable and robust in FA, even at high temperatures, and can catalyse neat FA dehydrogenation for over a month, with a total turnover number of 1,701,150. It can also generate high H2/CO2 gas pressures from neat FA (tested up to 100 bars). Mechanistic investigations and density functional theory studies are conducted to fully understand the molecular mechanism of the process. Overall, the high activity, stability, selectivity, simplicity and versatility of the system to generate a CO-free H2/CO2 gas stream and high pressure from neat FA makes it promising for large-scale implementation. Formic acid is a potential hydrogen carrier, although practical schemes to achieve its dehydrogenation are still rare. Here the authors introduce a stable and efficient ruthenium 9H-acridine pincer complex able to catalyse the additive-free dehydrogenation of neat formic acid, generating even high pressures of H2 and CO2 in a closed system.

Journal ArticleDOI
TL;DR: In this article, a graphitic carbon nitride (g-CxN4)-based nanosheet with melem rings conjugated by Schiff-base bond (N=C−C=N) was synthesized, tuning the bandgaps in the range of 1.2, 3.6 or 3.8.

Journal ArticleDOI
10 Nov 2021-Nature
TL;DR: In this paper, a method for preparation of environmentally compatible supported catalysts based on commercial ZnO is introduced, where metal oxide and a support (zeolite or common metal oxide) are used as a physical mixture or in the form of two layers with Zn O as the upstream layer.
Abstract: Propane dehydrogenation (PDH) to propene is an important alternative to oil-based cracking processes, to produce this industrially important platform chemical1,2. The commercial PDH technologies utilizing Cr-containing (refs. 3,4) or Pt-containing (refs. 5–8) catalysts suffer from the toxicity of Cr(vi) compounds or the need to use ecologically harmful chlorine for catalyst regeneration9. Here, we introduce a method for preparation of environmentally compatible supported catalysts based on commercial ZnO. This metal oxide and a support (zeolite or common metal oxide) are used as a physical mixture or in the form of two layers with ZnO as the upstream layer. Supported ZnOx species are in situ formed through a reaction of support OH groups with Zn atoms generated from ZnO upon reductive treatment above 550 °C. Using different complementary characterization methods, we identify the decisive role of defective OH groups for the formation of active ZnOx species. For benchmarking purposes, the developed ZnO–silicalite-1 and an analogue of commercial K–CrOx/Al2O3 were tested in the same setup under industrially relevant conditions at close propane conversion over about 400 h on propane stream. The developed catalyst reveals about three times higher propene productivity at similar propene selectivity. Propene is obtained through propane dehydrogenation using catalysts that are toxic, expensive or demanding to regenerate with ecologically harmful compounds, but the ZnO-based alternative reported here is cheap, clean and scalable.

Journal ArticleDOI
TL;DR: A comprehensive review of the state-of-the-art achievements in catalytic applications of zeolite-supported metal catalysts is presented in this paper, mainly focusing on hydrogenation reactions.
Abstract: Zeolites possessing large specific surface areas, ordered micropores, and adjustable acidity/basicity have emerged as ideal supports to immobilize metal species with small sizes and high dispersities. In recent years, the zeolite-supported metal catalysts have been widely used in diverse catalytic processes, showing excellent activity, superior thermal/hydrothermal stability, and unique shape-selectivity. In this review, a comprehensive summary of the state-of-the-art achievements in catalytic applications of zeolite-supported metal catalysts are presented for important heterogeneous catalytic processes in the last five years, mainly including 1) the hydrogenation reactions (e.g., CO/CO2 hydrogenation, hydrogenation of unsaturated compounds, and hydrogenation of nitrogenous compounds); 2) dehydrogenation reactions (e.g., alkane dehydrogenation and dehydrogenation of chemical hydrogen storage materials); 3) oxidation reactions (e.g., CO oxidation, methane oxidation, and alkene epoxidation); and 4) other reactions (e.g., hydroisomerization reaction and selective catalytic reduction of NOx with ammonia reaction). Finally, some current limitations and future perspectives on the challenge and opportunity for this subject are pointed out. It is believed that this review will inspire more innovative research on the synthesis and catalysis of zeolite-supported metal catalysts and promote their future developments to meet the emerging demands for practical applications.

Journal ArticleDOI
TL;DR: In this article, the support nature and especially textural properties firstly affects significantly Pd size and dispersion and its interaction with the support and secondly influence in a great extent the catalytic behavior of the final material.
Abstract: Biomass waste product was used to generate biochars as catalytic supports for selective hydrogen production from formic acid. The supports were obtained after pyrolysis in CO2 atmosphere of non-pretreated and chemically ZnCl2 activated raw materials (vine shoot and crystalline cellulose). The support series includes materials with different textural properties and surface chemistry. The support nature and especially textural properties firstly affects significantly Pd size and dispersion and its interaction with the support and secondly influence in a great extent the catalytic behavior of the final material. The presence of prevailing mesoporous character appeared to be the most important parameter influencing formic acid dehydrogenation and overall hydrogen production.

Journal ArticleDOI
TL;DR: In this paper, an overview of the recent advances in catalyst-enhanced LiAlH4 for solid-state hydrogen storage is detailed, and the remaining challenges and the future prospect of LiH4-catalyst system is also discussed.