scispace - formally typeset
Search or ask a question
Topic

Delaunay triangulation

About: Delaunay triangulation is a research topic. Over the lifetime, 5816 publications have been published within this topic receiving 126615 citations. The topic is also known as: Delone triangulation.


Papers
More filters
Book ChapterDOI
27 May 1996
TL;DR: Triangle as discussed by the authors is a robust implementation of two-dimensional constrained Delaunay triangulation and Ruppert's Delaunayer refinement algorithm for quality mesh generation, and it is shown that the problem of triangulating a planar straight line graph (PSLG) without introducing new small angles is impossible for some PSLGs.
Abstract: Triangle is a robust implementation of two-dimensional constrained Delaunay triangulation and Ruppert's Delaunay refinement algorithm for quality mesh generation. Several implementation issues are discussed, including the choice of triangulation algorithms and data structures, the effect of several variants of the Delaunay refinement algorithm on mesh quality, and the use of adaptive exact arithmetic to ensure robustness with minimal sacrifice of speed. The problem of triangulating a planar straight line graph (PSLG) without introducing new small angles is shown to be impossible for some PSLGs, contradicting the claim that a variant of the Delaunay refinement algorithm solves this problem.

2,268 citations

Journal ArticleDOI
TL;DR: This article introduces the formal notion of the family of α-shapes of a finite point set in R 3 .
Abstract: Frequently, data in scientific computing is in its abstract form a finite point set in space, and it is sometimes useful or required to compute what one might call the “shape” of the set. For that purpose, this article introduces the formal notion of the family of a-shapes of a finite point set in R3. Each shape is a well-defined polytope, derived from the Delaunay triangulation of the point set, with a parameter a e R controlling the desired level of detail. An algorithm is presented that constructs the entire family of shapes for a given set of size n in time 0(n2), worst case. A robust implementation of the algorithm is discussed, and several applications in the area of scientific computing are mentioned.

1,980 citations

Journal ArticleDOI
TL;DR: A generalization of the convex hull of a finite set of points in the plane leads to a family of straight-line graphs, "alpha -shapes," which seem to capture the intuitive notions of "fine shape" and "crude shape" of point sets.
Abstract: A generalization of the convex hull of a finite set of points in the plane is introduced and analyzed. This generalization leads to a family of straight-line graphs, " \alpha -shapes," which seem to capture the intuitive notions of "fine shape" and "crude shape" of point sets. It is shown that a-shapes are subgraphs of the closest point or furthest point Delaunay triangulation. Relying on this result an optimal O(n \log n) algorithm that constructs \alpha -shapes is developed.

1,648 citations

Journal ArticleDOI
TL;DR: This paper provides a unified discussion of the Delaunay triangulation and two algorithms are presented for constructing the triangulations over a planar set ofN points.
Abstract: This paper provides a unified discussion of the Delaunay triangulation. Its geometric properties are reviewed and several applications are discussed. Two algorithms are presented for constructing the triangulation over a planar set ofN points. The first algorithm uses a divide-and-conquer approach. It runs inO(N logN) time, which is asymptotically optimal. The second algorithm is iterative and requiresO(N 2) time in the worst case. However, its average case performance is comparable to that of the first algorithm.

1,460 citations

Journal ArticleDOI
TL;DR: The essential algorithms and techniques used to develop TetGen are presented, including an efficient tetrahedral mesh data structure, a set of enhanced local mesh operations, and filtered exact geometric predicates, which can robustly handle arbitrary complex 3D geometries and is fast in practice.
Abstract: TetGen is a Cpp program for generating good quality tetrahedral meshes aimed to support numerical methods and scientific computing. The problem of quality tetrahedral mesh generation is challenged by many theoretical and practical issues. TetGen uses Delaunay-based algorithms which have theoretical guarantee of correctness. It can robustly handle arbitrary complex 3D geometries and is fast in practice. The source code of TetGen is freely available.This article presents the essential algorithms and techniques used to develop TetGen. The intended audience are researchers or developers in mesh generation or other related areas. It describes the key software components of TetGen, including an efficient tetrahedral mesh data structure, a set of enhanced local mesh operations (combination of flips and edge removal), and filtered exact geometric predicates. The essential algorithms include incremental Delaunay algorithms for inserting vertices, constrained Delaunay algorithms for inserting constraints (edges and triangles), a new edge recovery algorithm for recovering constraints, and a new constrained Delaunay refinement algorithm for adaptive quality tetrahedral mesh generation. Experimental examples as well as comparisons with other softwares are presented.

1,290 citations


Network Information
Related Topics (5)
Graph (abstract data type)
69.9K papers, 1.2M citations
79% related
Upper and lower bounds
56.9K papers, 1.1M citations
78% related
Cluster analysis
146.5K papers, 2.9M citations
76% related
Image processing
229.9K papers, 3.5M citations
76% related
Discretization
53K papers, 1M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202393
2022203
2021130
2020185
2019204
2018223