scispace - formally typeset
Search or ask a question
Topic

Delta wave

About: Delta wave is a research topic. Over the lifetime, 522 publications have been published within this topic receiving 23696 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that the specific loops give the content of cognition, and a nonspecific loop gives the temporal binding required for the unity of cognitive experience.
Abstract: Magnetic recording from five normal human adults demonstrates large 40-Hz coherent magnetic activity in the awake and in rapid-eye-movement (REM) sleep states that is very reduced during delta sleep (deep sleep characterized by delta waves in the electroencephalogram). This 40-Hz magnetic oscillation has been shown to be reset by sensory stimuli in the awake state. Such resetting is not observed during REM or delta sleep. The 40 Hz in REM sleep is characterized, as is that in the awake state, by a fronto-occipital phase shift over the head. This phase shift has a maximum duration of approximately 12-13 msec. Because 40-Hz oscillation is seen in wakefulness and in dreaming, we propose it to be a correlate of cognition, probably resultant from coherent 40-Hz resonance between thalamocortical-specific and nonspecific loops. Moreover, we proposed that the specific loops give the content of cognition, and a nonspecific loop gives the temporal binding required for the unity of cognitive experience.

940 citations

Journal ArticleDOI
TL;DR: A robust correlation of neuronal discharges between the somatosensory cortex and hippocampus on both slow and fine time scales in the mouse and rat is shown, suggesting that oscillation-mediated temporal links coordinate specific information transfer between neocortical and hippocampal cell assemblies.
Abstract: Both neocortical and hippocampal networks organize the firing patterns of their neurons by prominent oscillations during sleep, but the functional role of these rhythms is not well understood. Here, we show a robust correlation of neuronal discharges between the somatosensory cortex and hippocampus on both slow and fine time scales in the mouse and rat. Neuronal bursts in deep cortical layers, associated with sleep spindles and delta waves/slow rhythm, effectively triggered hippocampal discharges related to fast (ripple) oscillations. We hypothesize that oscillation-mediated temporal links coordinate specific information transfer between neocortical and hippocampal cell assemblies. Such a neocortical–hippocampal interplay may be important for memory consolidation.

865 citations

Journal ArticleDOI
TL;DR: Evidence shows that delta oscillations are associated with evolutionary old basic processes, which in waking adults are overshadowed by more advanced processes associated with higher frequency oscillations.

540 citations

Journal ArticleDOI
TL;DR: The results demonstrate that distinct components below 1 Hz are also present in the human sleep electroencephalogram spectrum, in accordance with results from animal experiments.

540 citations

Journal ArticleDOI
TL;DR: This study proposes that the potentiating influence of the corticothalamic input results from the engagement of two GABAergic thalamic cell classes, reticular and local-circuit neurons, and proposes a progressive hyperpolarization of thalamocortical neurons with the deepening of the behavioral state of EEG-synchronized sleep.
Abstract: A slow (0.5-4 Hz) oscillation of thalamic neurons was recently described and attributed to the interplay of two intrinsic currents. In this study, we investigated the network modulation of this intrinsic thalamic oscillation within the frequency range of EEG sleep delta-waves. We performed intracellular and extracellular recordings of antidromically identified thalamocortical cells (n = 305) in sensory, motor, associational, and intralaminar nuclei of anesthetized cats. At the resting membrane potential, Vm (-60.3 +/- 0.4 mV, mean +/- SE), cortical stimulation induced spindle-like oscillations (7-14 Hz), whereas at Vm more negative than -65 mV the same stimuli triggered an oscillation within the EEG delta-frequency (0.5-4 Hz), consisting of low-threshold spikes (LTSs) followed by after hyperpolarizing potentials (AHPs). The LTS-AHP sequences outlasted cortical stimuli as a self-sustained rhythmicity at 1-2 Hz. Corticothalamic stimuli were able to transform subthreshold slow (0.5-4 Hz) oscillations, occurring spontaneously at Vm more negative than -65 mV, into rhythmic LTSs crowned by bursts of Na+ spikes that persisted for 10-20 sec after cessation of cortical volleys. Cortical volleys also revived a hyperpolarization-activated slow oscillation when it dampened after a few cycles. Auto- and crosscorrelograms of neuronal pairs revealed that unrelated cells became synchronized after a series of corticothalamic stimuli, with both neurons displaying rhythmic (1-2 Hz) bursts or spike trains. Since delta-thalamic oscillations, prevailing during late sleep stages, are triggered at more negative Vm than spindles characterizing the early sleep stage, we postulate a progressive hyperpolarization of thalamocortical neurons with the deepening of the behavioral state of EEG-synchronized sleep. In view of the evidence that cortical-elicited slow oscillations depend on synaptically induced hyperpolarization of thalamocortical cells, we propose that the potentiating influence of the corticothalamic input results from the engagement of two GABAergic thalamic cell classes, reticular and local-circuit neurons. The thalamocorticothalamic loop would transfer the spike bursts of thalamic oscillating cells to cortical targets, which in turn would reinforce the oscillation by direct pathways and/or indirect projections relayed by reticular and local-circuit thalamic cells. Stimulation of mesopontine cholinergic [peribrachial (PB) and laterodorsal tegmental (LDT)] nuclei in monoamine-depleted animals had an effect that was opposite to that exerted by corticothalamic volleys. PB/LDT stimulation reduced or suppressed the slow (1-4 Hz) oscillatory bursts of high-frequency spikes in thalamic cells.(ABSTRACT TRUNCATED AT 400 WORDS)

460 citations


Network Information
Related Topics (5)
Epilepsy
62.7K papers, 1.7M citations
78% related
Hippocampal formation
30.6K papers, 1.7M citations
75% related
Hippocampus
34.9K papers, 1.9M citations
75% related
Dopamine
45.7K papers, 2.2M citations
74% related
Dopaminergic
29K papers, 1.4M citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20236
202215
202118
202011
201914
201814