scispace - formally typeset
Search or ask a question
Topic

Demand response

About: Demand response is a research topic. Over the lifetime, 13587 publications have been published within this topic receiving 252168 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview and a taxonomy for DSM is given, the various types of DSM are analyzed, and an outlook on the latest demonstration projects in this domain is given.
Abstract: Energy management means to optimize one of the most complex and important technical creations that we know: the energy system. While there is plenty of experience in optimizing energy generation and distribution, it is the demand side that receives increasing attention by research and industry. Demand Side Management (DSM) is a portfolio of measures to improve the energy system at the side of consumption. It ranges from improving energy efficiency by using better materials, over smart energy tariffs with incentives for certain consumption patterns, up to sophisticated real-time control of distributed energy resources. This paper gives an overview and a taxonomy for DSM, analyzes the various types of DSM, and gives an outlook on the latest demonstration projects in this domain.

2,647 citations

Journal ArticleDOI
TL;DR: In this article, a survey of demand response potentials and benefits in smart grids is presented, with reference to real industrial case studies and research projects, such as smart meters, energy controllers, communication systems, etc.
Abstract: The smart grid is conceived of as an electric grid that can deliver electricity in a controlled, smart way from points of generation to active consumers. Demand response (DR), by promoting the interaction and responsiveness of the customers, may offer a broad range of potential benefits on system operation and expansion and on market efficiency. Moreover, by improving the reliability of the power system and, in the long term, lowering peak demand, DR reduces overall plant and capital cost investments and postpones the need for network upgrades. In this paper a survey of DR potentials and benefits in smart grids is presented. Innovative enabling technologies and systems, such as smart meters, energy controllers, communication systems, decisive to facilitate the coordination of efficiency and DR in a smart grid, are described and discussed with reference to real industrial case studies and research projects.

1,901 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a summary of demand response in deregulated electricity markets and highlight the most common indices used for DR measurement and evaluation, and some utilities' experiences with different demand response programs are discussed.

1,751 citations

Journal ArticleDOI
TL;DR: This paper overviews the issues related to the smart grid architecture from the perspective of potential applications and the communications requirements needed for ensuring performance, flexible operation, reliability and economics.
Abstract: Information and communication technologies (ICT) represent a fundamental element in the growth and performance of smart grids. A sophisticated, reliable and fast communication infrastructure is, in fact, necessary for the connection among the huge amount of distributed elements, such as generators, substations, energy storage systems and users, enabling a real time exchange of data and information necessary for the management of the system and for ensuring improvements in terms of efficiency, reliability, flexibility and investment return for all those involved in a smart grid: producers, operators and customers. This paper overviews the issues related to the smart grid architecture from the perspective of potential applications and the communications requirements needed for ensuring performance, flexible operation, reliability and economics.

1,018 citations

Proceedings ArticleDOI
24 Jul 2011
TL;DR: This paper considers households that operate different appliances including PHEVs and batteries and proposes a demand response approach based on utility maximization, which proposes a distributed algorithm for the utility company and the customers to jointly compute this optimal prices and demand schedules.
Abstract: Demand side management will be a key component of future smart grid that can help reduce peak load and adapt elastic demand to fluctuating generations. In this paper, we consider households that operate different appliances including PHEVs and batteries and propose a demand response approach based on utility maximization. Each appliance provides a certain benefit depending on the pattern or volume of power it consumes. Each household wishes to optimally schedule its power consumption so as to maximize its individual net benefit subject to various consumption and power flow constraints. We show that there exist time-varying prices that can align individual optimality with social optimality, i.e., under such prices, when the households selfishly optimize their own benefits, they automatically also maximize the social welfare. The utility company can thus use dynamic pricing to coordinate demand responses to the benefit of the overall system. We propose a distributed algorithm for the utility company and the customers to jointly compute this optimal prices and demand schedules. Finally, we present simulation results that illustrate several interesting properties of the proposed scheme.

1,014 citations


Network Information
Related Topics (5)
Renewable energy
87.6K papers, 1.6M citations
70% related
Wind power
99K papers, 1.5M citations
68% related
Photovoltaic system
103.9K papers, 1.6M citations
68% related
Electric power system
133K papers, 1.7M citations
67% related
Efficient energy use
73K papers, 1.1M citations
65% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023773
20221,592
20211,300
20201,608
20191,696
20181,448