scispace - formally typeset
Search or ask a question
Topic

Demethylase

About: Demethylase is a research topic. Over the lifetime, 2717 publications have been published within this topic receiving 127412 citations.


Papers
More filters
Journal ArticleDOI
22 Jun 2012-Cell
TL;DR: A method is presented for transcriptome-wide m(6)A localization, which combines m( 6)A-specific methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-Seq) and reveals insights into the epigenetic regulation of the mammalian transcriptome.

2,839 citations

Journal ArticleDOI
TL;DR: The discovery of ALKBH5 as another mammalian demethylase that oxidatively reverses m(6)A in mRNA in vitro and in vivo strongly suggests that the reversible m( 6)A modification has fundamental and broad functions in mammalian cells.

2,274 citations

Journal ArticleDOI
16 Feb 2006-Nature
TL;DR: The JmjC domain is identified as a novel demethylase signature motif and a protein demethylation mechanism that is conserved from yeast to human is uncovered.
Abstract: Covalent modification of histones has an important role in regulating chromatin dynamics and transcription. Whereas most covalent histone modifications are reversible, until recently it was unknown whether methyl groups could be actively removed from histones. Using a biochemical assay coupled with chromatography, we have purified a novel JmjC domain-containing protein, JHDM1 (JmjC domain-containing histone demethylase 1), that specifically demethylates histone H3 at lysine 36 (H3-K36). In the presence of Fe(ii) and alpha-ketoglutarate, JHDM1 demethylates H3-methyl-K36 and generates formaldehyde and succinate. Overexpression of JHDM1 reduced the level of dimethyl-H3-K36 (H3K36me2) in vivo. The demethylase activity of the JmjC domain-containing proteins is conserved, as a JHDM1 homologue in Saccharomyces cerevisiae also has H3-K36 demethylase activity. Thus, we identify the JmjC domain as a novel demethylase signature motif and uncover a protein demethylation mechanism that is conserved from yeast to human.

1,993 citations

Journal ArticleDOI
30 Nov 2007-Science
TL;DR: It is found that recombinant murine Fto catalyzes the Fe(II)- and 2OG-dependent demethylation of 3-methylthymine in single-stranded DNA, with concomitant production of succinate, formaldehyde, and carbon dioxide.
Abstract: Variants in the FTO (fat mass and obesity associated) gene are associated with increased body mass index in humans. Here, we show by bioinformatics analysis that FTO shares sequence motifs with Fe(II)- and 2-oxoglutarate–dependent oxygenases. We find that recombinant murine Fto catalyzes the Fe(II)- and 2OG-dependent demethylation of 3-methylthymine in single-stranded DNA, with concomitant production of succinate, formaldehyde, and carbon dioxide. Consistent with a potential role in nucleic acid demethylation, Fto localizes to the nucleus in transfected cells. Studies of wild-type mice indicate that Fto messenger RNA (mRNA) is most abundant in the brain, particularly in hypothalamic nuclei governing energy balance, and that Fto mRNA levels in the arcuate nucleus are regulated by feeding and fasting. Studies can now be directed toward determining the physiologically relevant FTO substrate and how nucleic acid methylation status is linked to increased fat mass.

1,369 citations

Journal ArticleDOI
TL;DR: This is the first complete and detailed analysis of the epigenetic reprogramming cycle during preimplantation development and shows that demethylation of the male pronucleus is completed within 4 h of fertilisation.

1,218 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
90% related
Regulation of gene expression
85.4K papers, 5.8M citations
89% related
Transcription factor
82.8K papers, 5.4M citations
89% related
Cell culture
133.3K papers, 5.3M citations
87% related
Gene expression
113.3K papers, 5.5M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023467
2022451
2021272
2020275
2019250
2018229