scispace - formally typeset
Search or ask a question
Topic

Dengue fever

About: Dengue fever is a research topic. Over the lifetime, 17463 publications have been published within this topic receiving 485745 citations. The topic is also known as: Dengue & dengue disease.


Papers
More filters
Journal ArticleDOI
TL;DR: The strategies discussed in this report should be applicable to antiviral development of other viruses, including dengue virus and other flaviviruses.

249 citations

Journal ArticleDOI
TL;DR: Oral administration of the antiviral compounds 7-deaza-2'-C-methyl-adenosine, N-nonyl-deoxynojirimycin, or 6-O-butanoyl castanospermine significantly reduced viremia in a dose-dependent manner, even after delayed treatment, leading to a reduction of splenomegaly and proinflammatory cytokine levels.
Abstract: Dengue fever is an emerging arboviral disease for which no vaccine or antiviral treatment exists and that causes thousands of fatalities each year. To develop an in vivo test system for antidengue drugs, AG129 mice, which are deficient for the interferon- alpha / beta and - gamma receptors, were injected with unadapted dengue virus, resulting in a dose-dependent transient viremia lasting several days and peaking on day 3 after infection. Additionally, nonstructural protein 1, increased levels of proinflammatory cytokines, and neutralizing IgM and IgG antibodies were found, and mice had splenomegaly. Oral administration of the antiviral compounds 7-deaza-2'-C-methyl-adenosine, N-nonyl-deoxynojirimycin, or 6-O-butanoyl castanospermine significantly reduced viremia in a dose-dependent manner, even after delayed treatment, leading to a reduction of splenomegaly and proinflammatory cytokine levels. The results validate this dengue viremia mouse model as a suitable system for testing antidengue drugs and indicate that antiviral treatment during the acute phase of dengue fever can reduce the severity of the disease.

248 citations

Journal ArticleDOI
TL;DR: If serologic testing indicates recent flavivirus infection that could be caused by either Zika or dengue virus, patients should be clinically managed for both infections because they might have been infected with either virus.
Abstract: Zika virus is a single-stranded RNA virus in the genus Flavivirus and is closely related to dengue, West Nile, Japanese encephalitis, and yellow fever viruses (1,2) Among flaviviruses, Zika and dengue virus share similar symptoms of infection, transmission cycles, and geographic distribution Diagnostic testing for Zika virus infection can be accomplished using both molecular and serologic methods For persons with suspected Zika virus disease, a positive real-time reverse transcription-polymerase chain reaction (rRT-PCR) result confirms Zika virus infection, but a negative rRT-PCR result does not exclude infection (3-7) In these cases, immunoglobulin (Ig) M and neutralizing antibody testing can identify additional recent Zika virus infections (6,7) However, Zika virus antibody test results can be difficult to interpret because of cross-reactivity with other flaviviruses, which can preclude identification of the specific infecting virus, especially when the person previously was infected with or vaccinated against a related flavivirus (8) This is important because the results of Zika and dengue virus testing will guide clinical management Pregnant women with laboratory evidence of Zika virus infection should be evaluated and managed for possible adverse pregnancy outcomes and be reported to the US Zika Pregnancy Registry or the Puerto Rico Zika Active Pregnancy Surveillance System for clinical follow-up (9,10) All patients with clinically suspected dengue should have proper management to reduce the risk for hemorrhage and shock (11) If serologic testing indicates recent flavivirus infection that could be caused by either Zika or dengue virus, patients should be clinically managed for both infections because they might have been infected with either virus

248 citations

Journal ArticleDOI
TL;DR: New knowledge related to dengue ADE is reviewed and areas where there has been little research progress are pointed to.
Abstract: Dengue provides the most abundant example in human medicine and the greatest human illness burden caused by the phenomenon of intrinsic antibody-dependent infection enhancement (iADE). In this immunopathological phenomenon infection of monocytes or macrophages using infectious immune complexes suppresses innate antiviral systems, permitting logarithmic intracellular growth of dengue virus. The four dengue viruses evolved from a common ancestor yet retain similar ecology and pathogenicity, but although infection with one virus provides short-term cross-protection against infection with a different type, millions of secondary dengue infections occur worldwide each year. When individuals are infected in the virtual absence of cross-protective dengue antibodies, the dengue vascular permeability syndrome (DVPS) may ensue. This occurs in around 2 to 4% of second heterotypic dengue infections. A complete understanding of the biologic mechanism of iADE, dengue biology, and the mechanism of host responses to dengue infection should lead to a comprehensive and complete understanding of the pathogenesis of DVPS. A crucial emphasis must be placed on understanding ADE. Clinical and epidemiological observations of DVPS define the research questions and provide research parameters. This article will review knowledge related to dengue ADE and point to areas where there has been little research progress. These observations relate to the two stages of dengue illnesses: afferent phenomena are those that promote the success of the microorganism to infect and survive; efferent phenomena are those mounted by the host to inhibit infection and replication and to eliminate the infectious agent and infected tissues. Data will be discussed as "knowns" and "unknowns."

247 citations

Journal ArticleDOI
TL;DR: Although ineffective immunity and high viral loads are characteristic of several viral hemorrhagic fevers, severe plasma leakage occurs at the time of viral clearance and defervescence in dengue hemorrhagic fever.
Abstract: Four families of enveloped RNA viruses, filoviruses, flaviviruses, arenaviruses, and bunyaviruses, cause hemorrhagic fevers. These viruses are maintained in specific natural cycles involving nonhuman primates, bats, rodents, domestic ruminants, humans, mosquitoes, and ticks. Vascular instability varies from mild to fatal shock, and hemorrhage ranges from none to life threatening. The pathogenic mechanisms are extremely diverse and include deficiency of hepatic synthesis of coagulation factors owing to hepatocellular necrosis, cytokine storm, increased permeability by vascular endothelial growth factor, complement activation, and disseminated intravascular coagulation in one or more hemorrhagic fevers. The severity of disease caused by these agents varies tremendously; there are extremely high fatality rates in Ebola and Marburg hemorrhagic fevers, and asymptomatic infection predominates in yellow fever and dengue viral infections. Although ineffective immunity and high viral loads are characteristic of several viral hemorrhagic fevers, severe plasma leakage occurs at the time of viral clearance and defervescence in dengue hemorrhagic fever.

245 citations


Network Information
Related Topics (5)
Malaria
37K papers, 914K citations
88% related
Vaccination
65.1K papers, 1.7M citations
81% related
Virus
136.9K papers, 5.2M citations
80% related
Drug resistance
28.4K papers, 1.1M citations
80% related
Viral load
26.7K papers, 1M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20231,464
20222,917
2021992
20201,237
20191,168