scispace - formally typeset
Search or ask a question

Showing papers on "Dengue virus published in 2007"


Journal ArticleDOI
TL;DR: The unique immunological concerns in dengue virus vaccine development are discussed and the current prospects for the development of an acceptable vaccine are discussed, with a goal that is likely to be reached in the near future.
Abstract: The number of cases of severe dengue disease continues to grow in endemic areas of southeast Asia, Central and South America, and other subtropical regions. Children bear the greatest burden of disease, and the development of an effective vaccine remains a global public health priority. A tetravalent vaccine is urgently needed and must be effective against all four dengue virus serotypes, be cost-effective and provide long-term protection. In this Review we discuss the unique immunological concerns in dengue virus vaccine development and the current prospects for the development of an acceptable vaccine, a goal that is likely to be reached in the near future.

604 citations


Journal ArticleDOI
TL;DR: The results suggest that the EIP of DENV-2 in its vector may be shorter that the previously reported and that the tracheal system may facilitate DENV -2 dissemination from the midgut.
Abstract: Background To be transmitted by its mosquito vector, dengue virus (DENV) must infect midgut epithelial cells, replicate and disseminate into the hemocoel, and finally infect the salivary glands, which is essential for transmission. The extrinsic incubation period (EIP) is very relevant epidemiologically and is the time required from the ingestion of virus until it can be transmitted to the next vertebrate host. The EIP is conditioned by the kinetics and tropisms of virus replication in its vector. Here we document the virogenesis of DENV-2 in newly-colonized Aedes aegypti mosquitoes from Chetumal, Mexico in order to understand better the effect of vector-virus interactions on dengue transmission.

413 citations


Journal ArticleDOI
TL;DR: The structure of the NS5 nuclear localization sequences, previously thought to fold into a separate domain, form an integral part of the polymerase subdomains and reveals the presence of two zinc ion binding motifs, which should inform and accelerate the structure-based design of antiviral compounds against dengue virus.
Abstract: Dengue fever, a neglected emerging disease for which no vaccine or antiviral agents exist at present, is caused by dengue virus, a member of the Flavivirus genus, which includes several important human pathogens, such as yellow fever and West Nile viruses. The NS5 protein from dengue virus is bifunctional and contains 900 amino acids. The S-adenosyl methionine transferase activity resides within its N-terminal domain, and residues 270 to 900 form the RNA-dependent RNA polymerase (RdRp) catalytic domain. Viral replication begins with the synthesis of minus-strand RNA from the dengue virus positive-strand RNA genome, which is subsequently used as a template for synthesizing additional plus-strand RNA genomes. This essential function for the production of new viral particles is catalyzed by the NS5 RdRp. Here we present a high-throughput in vitro assay partly recapitulating this activity and the crystallographic structure of an enzymatically active fragment of the dengue virus RdRp refined at 1.85-A resolution. The NS5 nuclear localization sequences, previously thought to fold into a separate domain, form an integral part of the polymerase subdomains. The structure also reveals the presence of two zinc ion binding motifs. In the absence of a template strand, a chain-terminating nucleoside analogue binds to the priming loop site. These results should inform and accelerate the structure-based design of antiviral compounds against dengue virus.

383 citations


Journal ArticleDOI
TL;DR: It is confirmed that significant viral amplification could occur during DENV infections in humans with prior infection or with maternally transferred immunity, possibly leading to severe dengue.
Abstract: Infection with dengue virus (DENV) or any other flavivirus induces cross-reactive, but weakly neutralizing or nonneutralizing, antibodies that recognize epitopes involving the fusion peptide in the envelope glycoprotein. Humanized mAb IgG 1A5, derived from a chimpanzee, shares properties of cross-reactive antibodies. mAb IgG 1A5 up-regulated DENV infection by a mechanism of antibody-dependent enhancement (ADE) in a variety of Fc receptor-bearing cells in vitro. A 10- to 1,000-fold increase of viral yield in K562 cells, dependent on the DENV serotype, was observed over a range of subneutralizing concentrations of IgG 1A5. A significant increase of DENV-4 viremia titers (up to 100-fold) was also demonstrated in juvenile rhesus monkeys immunized with passively transferred dilutions of IgG 1A5. These results, together with earlier findings of ADE of DENV-2 infection by a polyclonal serum, establish the primate model for analysis of ADE. Considering the abundance of these cross-reactive antibodies, our observations confirm that significant viral amplification could occur during DENV infections in humans with prior infection or with maternally transferred immunity, possibly leading to severe dengue. Strategies to eliminate ADE were explored by altering the antibody Fc structures responsible for binding to Fc receptors. IgG 1A5 variants, containing amino acid substitutions from the Fc region of IgG2 or IgG4 antibodies, reduced but did not eliminate DENV-4-enhancing activity in K562 cells. Importantly, a 9-aa deletion at the N terminus of the CH2 domain in the Fc region abrogated the enhancing activity.

360 citations


Journal ArticleDOI
TL;DR: The interaction of TIAR with viral components facilitates flavivirus genome RNA synthesis and inhibits SG formation, which prevents the shutoff of host translation.
Abstract: The West Nile virus minus-strand 3' terminal stem loop (SL) RNA was previously shown to bind specifically to cellular stress granule (SG) components, T cell intracellular antigen-1 (TIA-1) and the related protein TIAR. In vitro TIAR binding was 10 times more efficient than TIA-1. The 3'(-)SL functions as the promoter for genomic RNA synthesis. Colocalization of TIAR and TIA-1 with the viral replication complex components dsRNA and NS3 was observed in the perinuclear regions of West Nile virus- and dengue virus-infected cells. The kinetics of accumulation of TIAR in the perinuclear region was similar to those of genomic RNA synthesis. In contrast, relocation of TIA-1 to the perinuclear region began only after maximal levels of RNA synthesis had been achieved, except when TIAR was absent. Virus infection did not induce SGs and progressive resistance to SG induction by arsenite developed coincident with TIAR relocation. A progressive decrease in the number of processing bodies was secondarily observed in infected cells. These data suggest that the interaction of TIAR with viral components facilitates flavivirus genome RNA synthesis and inhibits SG formation, which prevents the shutoff of host translation.

291 citations


Journal ArticleDOI
TL;DR: Advances have underscored the fact that DHF/DSS pathogenesis is a complex, multifactorial process involving cocirculation of various dengue virus serotypes and the interplay of host and viral factors that influence disease severity.
Abstract: The past four decades has witnessed a consolidation of the original observations made in the 1970s that dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS) have an immunological basis. Following reinfection with a dengue virus of different serotype, severe disease is linked to high levels of antibody-enhanced viral replication early in illness which is followed by a cascade of memory T-cell activation and a 'storm' of inflammatory cytokines and other chemical mediators. These compounds are released mainly from T cells, monocytes/macrophages and endothelial cells, and ultimately cause an increase in vascular permeability. The consolidation of the evidence has been largely due to several important prospective sero-epidemiological studies in areas endemic for DHF/DSS, which have shown that risk of severe disease is significantly higher in secondary dengue infections. These advances have underscored the fact that DHF/DSS pathogenesis is a complex, multifactorial process involving cocirculation of various dengue virus serotypes and the interplay of host and viral factors that influence disease severity. The continued search to define risk factors in susceptible populations must be combined with the new techniques of molecular virology and innovative approaches in vaccine design to achieve the ultimate objective of developing a safe and effective vaccine.

271 citations


Journal ArticleDOI
TL;DR: Overall, the experiments define adjacent and structurally distinct epitopes on DIII of DENV-2 which elicit type-specific, subcomplex- specific, and cross-reactive antibodies with different neutralizing potentials.
Abstract: Neutralization of flaviviruses in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Previous studies demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral ridge of domain III (DIII) of the West Nile virus (WNV) E protein strongly protect against infection in animals. Based on X-ray crystallography and sequence analysis, an analogous type-specific neutralizing epitope for individual serotypes of the related flavivirus dengue virus (DENV) was hypothesized. Using yeast surface display of DIII variants, we defined contact residues of a panel of type-specific, subcomplex-specific, and cross-reactive MAbs that recognize DIII of DENV type 2 (DENV-2) and have different neutralizing potentials. Type-specific MAbs with neutralizing activity against DENV-2 localized to a sequence-unique epitope on the lateral ridge of DIII, centered at the FG loop near residues E383 and P384, analogous in position to that observed with WNV-specific strongly neutralizing MAbs. Subcomplex-specific MAbs that bound some but not all DENV serotypes and neutralized DENV-2 infection recognized an adjacent epitope centered on the connecting A strand of DIII at residues K305, K307, and K310. In contrast, several MAbs that had poor neutralizing activity against DENV-2 and cross-reacted with all DENV serotypes and other flaviviruses recognized an epitope with residues in the AB loop of DIII, a conserved region that is predicted to have limited accessibility on the mature virion. Overall, our experiments define adjacent and structurally distinct epitopes on DIII of DENV-2 which elicit type-specific, subcomplex-specific, and cross-reactive antibodies with different neutralizing potentials.

270 citations


Journal ArticleDOI
TL;DR: It is proposed that, by manipulating cellular cholesterol, WNV utilizes the cellular response to cholesterol deficiency and dependence of antiviral signaling pathways on cholesterol-rich microdomains to facilitate viral replication and survival.

261 citations


Journal ArticleDOI
TL;DR: It was observed that DENV binds very inefficiently to the cells used, explaining at least in part the high infectious unit-to-particle ratio.
Abstract: In this study, we investigated the cell entry characteristics of dengue virus (DENV) type 2 strain S1 on mosquito, BHK-15, and BS-C-1 cells. The concentration of virus particles measured by biochemical assays was found to be substantially higher than the number of infectious particles determined by infectivity assays, leading to an infectious unit-to-particle ratio of approximately 1:2,600 to 1:72,000, depending on the specific assays used. In order to explain this high ratio, we investigated the receptor binding and membrane fusion characteristics of single DENV particles in living cells using real-time fluorescence microscopy. For this purpose, DENV was labeled with the lipophilic fluorescent probe DiD (1,1-dioctadecyl-3,3,3,3-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt). The surface density of the DiD dye in the viral membrane was sufficiently high to largely quench the fluorescence intensity but still allowed clear detection of single virus particles. Fusion of the viral membrane with the cell membrane was evident as fluorescence dequenching. It was observed that DENV binds very inefficiently to the cells used, explaining at least in part the high infectious unit-to-particle ratio. The particles that did bind to the cells showed different types of transport behavior leading to membrane fusion in both the periphery and perinuclear regions of the cell. Membrane fusion was observed in 1 out of 6 bound virus particles, indicating that a substantial fraction of the virus has the capacity to fuse. DiD dequenching was completely inhibited by ammonium chloride, demonstrating that fusion occurs exclusively from within acidic endosomes. Dengue virus (DENV) is an enveloped, positive-strand RNA virus belonging to the family Flaviviridae, which also includes tick-borne encephalitis virus, yellow fever virus, and West Nile virus. Flavivirus virions contain three structural proteins: the C (capsid) protein, the M (membrane) protein, and the E (envelope) protein (12, 26). Multiple copies of the C protein associate with the viral RNA to form the nucleocapsid (26). The nucleocapsid is surrounded by a lipid bilayer in which the M and E glycoproteins are inserted. In the infected cell, the M protein is produced as a precursor protein called prM, which is believed to function as a chaperone during the folding

251 citations


Journal ArticleDOI
TL;DR: Oral administration of the antiviral compounds 7-deaza-2'-C-methyl-adenosine, N-nonyl-deoxynojirimycin, or 6-O-butanoyl castanospermine significantly reduced viremia in a dose-dependent manner, even after delayed treatment, leading to a reduction of splenomegaly and proinflammatory cytokine levels.
Abstract: Dengue fever is an emerging arboviral disease for which no vaccine or antiviral treatment exists and that causes thousands of fatalities each year. To develop an in vivo test system for antidengue drugs, AG129 mice, which are deficient for the interferon- alpha / beta and - gamma receptors, were injected with unadapted dengue virus, resulting in a dose-dependent transient viremia lasting several days and peaking on day 3 after infection. Additionally, nonstructural protein 1, increased levels of proinflammatory cytokines, and neutralizing IgM and IgG antibodies were found, and mice had splenomegaly. Oral administration of the antiviral compounds 7-deaza-2'-C-methyl-adenosine, N-nonyl-deoxynojirimycin, or 6-O-butanoyl castanospermine significantly reduced viremia in a dose-dependent manner, even after delayed treatment, leading to a reduction of splenomegaly and proinflammatory cytokine levels. The results validate this dengue viremia mouse model as a suitable system for testing antidengue drugs and indicate that antiviral treatment during the acute phase of dengue fever can reduce the severity of the disease.

248 citations


Journal ArticleDOI
TL;DR: An analysis of the database of children admitted to the Queen Sirikit National Institute of Child Health and Kamphaeng Phet Provincial Hospital with suspected dengue illness revealed that the number of d Dengue admissions caused by a third or fourth DENV infection was extremely low.
Abstract: Immunity to a single dengue virus (DENV) infection does not provide heterologous immunity to subsequent infection. In fact, the greatest risk for dengue hemorrhagic fever (DHF) is with a second DENV serotype exposure. The risk for DHF with a third or fourth dengue infection relative to a first or second exposure is not known. An analysis of our database of children admitted to the Queen Sirikit National Institute of Child Health and Kamphaeng Phet Provincial Hospital with suspected dengue illness revealed that the number of dengue admissions caused by a third or fourth DENV infection was extremely low (0.08-0.8%). Once admitted, the risk for DHF relative to dengue fever was not different for those experiencing third or fourth DENV infections over those experiencing a second DENV infection. We document new dengue serotype infection sequences leading to DHF of 1-4, 2-3, 3-1, and 3-4.

Journal ArticleDOI
TL;DR: Unbiased gene expression analysis has identified new host genes associated with dengue infection, which have been validated in functional studies and showed that some parts of the host response can be used as potential biomarkers for the disease while others can be use to control dengu viral replication, thus representing viable targets for drug therapy.
Abstract: Background Despite the seriousness of dengue-related disease, with an estimated 50–100 million cases of dengue fever and 250,000–500,000 cases of dengue hemorrhagic fever/dengue shock syndrome each year, a clear understanding of dengue pathogenesis remains elusive. Because of the lack of a disease model in animals and the complex immune interaction in dengue infection, the study of host response and immunopathogenesis is difficult. The development of genomics technology, microarray and high throughput quantitative PCR have allowed researchers to study gene expression changes on a much broader scale. We therefore used this approach to investigate the host response in dengue virus-infected cell lines and in patients developing dengue fever.

Journal ArticleDOI
TL;DR: ADE infection not only facilitates the entry process, but also modifies innate and adaptive intracellular antiviral mechanisms, resulting in unrestricted DENV replication in THP-1 cells.
Abstract: The immunopathogenesis of dengue haemorrhagic fever and dengue shock syndrome is thought to be mediated by a variety of host factors. Enhancing antibodies are one of the key regulating molecules. These antibodies, via antibody-dependent enhancement (ADE) of infection, are able to facilitate dengue virus (DENV) growth in Fc-bearing host cells. The mechanism of ADE-enhanced DENV production is believed to be mediated through increasing the infected-cell mass. In the present work, the effect of ADE infection was explored further, focusing on the post-entry events of ADE infection. It was hypothesized that the higher virus production in ADE infection compared with DENV infection may be due to the ability of this infection pathway to suppress key antiviral molecules. Therefore, the influence of ADE infection on pro- and anti-inflammatory cytokines, including interleukin-12 (IL-12), gamma interferon (IFN-γ), tumour necrosis factor alpha (TNF-α), IL-6 and IL-10, was investigated and it was found that DENV infection via the Fc receptor-mediated pathway was able to suppress the transcription and translation of IL-12, IFN-γ and TNF-α. In contrast, infection via this route facilitated expression and synthesis of the anti-inflammatory cytokines IL-6 and IL-10. Moreover, this study demonstrates that the ADE infection pathway also suppresses an innate anti-DENV mediator, nitric oxide radicals, by disrupting the transcription of the iNOS gene transcription factor, IRF-1, and blocking the activation of STAT-1. In conclusion, ADE infection not only facilitates the entry process, but also modifies innate and adaptive intracellular antiviral mechanisms, resulting in unrestricted DENV replication in THP-1 cells.

Journal ArticleDOI
TL;DR: It is understood that the process is initiated by infection with a virulent d Dengue virus, often in the presence of antibodies that enhance dengue virus infection in secondary infection, and then triggered by rapidly elevated cytokines and chemical mediators that were produced by intense immune activation.
Abstract: Dengue virus infections are a serious cause of morbidity and mortality in most tropical and subtropical areas of the world; Southeast and South Asia, Central and South America, and the Caribbean. Dengue virus infection can be asymptomatic or causes two forms of illness, dengue fever (DF) and dengue hemorrhagic fever (DHF), which is the severe form of dengue illness and often fatal. Pathogenesis of DHF has been analyzed, and two mechanisms are considered to be responsible. These include dengue serotype cross-reactive immune responses and virulence of the virus. The immunopathological mechanisms include a complex series of immune responses. Rapid increase in the levels of cytokines, especially TNF-alpha, and chemical mediators play a key role in inducing unique clinical manifestations of DHF such as plasma leakage, shock, and hemorrhagic manifestations. It is understood that the process is initiated by infection with a virulent dengue virus, often in the presence of antibodies that enhance dengue virus infection in secondary infection, and then triggered by rapidly elevated cytokines and chemical mediators that were produced by intense immune activation. However, complete understanding of the entire pathological mechanism is far from complete, and further studies are still needed.

Journal ArticleDOI
TL;DR: The crystal structure of WNV NS2B‐NS3pro is reported both in a substrate‐free form and in complex with the trypsin inhibitor aprotinin/BPTI, providing evidence for an “induced fit” mechanism of catalysis and allowing the design of protease inhibitors to treat a range of flaviviral infections.
Abstract: Pathogenic members of the flavivirus family, including West Nile Virus (WNV) and Dengue Virus (DV), are growing global threats for which there are no specific treatments. The two-component flaviviral enzyme NS2B-NS3 cleaves the viral polyprotein precursor within the host cell, a process that is required for viral replication. Here, we report the crystal structure of WNV NS2B-NS3pro both in a substrate-free form and in complex with the trypsin inhibitor aprotinin/BPTI. We show that aprotinin binds in a substrate-mimetic fashion in which the productive conformation of the protease is fully formed, providing evidence for an “induced fit” mechanism of catalysis and allowing us to rationalize the distinct substrate specificities of WNV and DV proteases. We also show that the NS2B cofactor of WNV can adopt two very distinct conformations and that this is likely to be a general feature of flaviviral proteases, providing further opportunities for regulation. Finally, by comparing the flaviviral proteases with the more distantly related Hepatitis C virus, we provide insights into the evolution of the Flaviviridae fold. Our work should expedite the design of protease inhibitors to treat a range of flaviviral infections.

Journal ArticleDOI
30 Sep 2007-Virology
TL;DR: The results indicate that the conserved antigenic site recognized by all seven MAbs is likely to be a dominant DENV-2 type-specific, neutralization determinant.

Journal ArticleDOI
TL;DR: It is illustrated that intradermal inoculation of high titers of DV predisposes endothelial cells to be susceptible to TNF-α-induced cell death, which leads to endothelium damage and hemorrhage development, which highlights the contribution of the innate immune response to dengue hemorrhage.
Abstract: Hemorrhage is a common clinical manifestation in dengue patients. However, the pathogenic mechanism of dengue virus (DV)-induced hemorrhage awaits clarification. We established a mouse model of DV hemorrhage using immunocompetent C57BL/6 mice by injecting DV serotype 2 strain 16681 intradermally. While inoculation of 3 x 10(9) PFU of DV induced systemic hemorrhage in all of the mice by day 3 of infection, one out of three of those injected with 4 x 10(7) to 8 x 10(7) PFU developed hemorrhage in the subcutaneous tissues. The mice that were inoculated with 4 x 10(7) to 8 x 10(7) PFU but that did not develop hemorrhage were used as a basis for comparison to explore the pathogenic mechanism of dengue hemorrhage. The results showed that mice with severe thrombocytopenia manifested signs of vascular leakage and hemorrhage. We observed that high viral titer, macrophage infiltration, and tumor necrosis factor alpha (TNF-alpha) production in the local tissues are three important events that lead to hemorrhage. Immunofluorescence staining revealed that DV targeted both endothelial cells and macrophages. In addition, the production of high levels of TNF-alpha in tissues correlated with endothelial cell apoptosis and hemorrhage. By comparing TNF-alpha(-/-) to IgH(-/-), C5(-/-), and wild-type mice, we found that TNF-alpha was important for the development of hemorrhage. In vitro studies showed that mouse primary microvascular endothelial cells were susceptible to DV but that TNF-alpha enhanced DV-induced apoptosis. Our mouse model illustrated that intradermal inoculation of high titers of DV predisposes endothelial cells to be susceptible to TNF-alpha-induced cell death, which leads to endothelium damage and hemorrhage development. This finding highlights the contribution of the innate immune response to dengue hemorrhage.

Journal ArticleDOI
TL;DR: The results indicate that the commercial dengue NS1 antigen-capture ELISA may be superior to virus isolation and RT-PCR for the laboratory diagnosis of acute d Dengue infection based on a single serum sample.

Journal ArticleDOI
05 Jul 2007-Virology
TL;DR: The dual sites of action of an HS-like molecule suggest that, at least in monkey kidney and human hepatic cells, the HS residues in the cell membrane appear to act as mediators for DENV-2 entry, an interesting alternative target for flavivirus therapy.

Journal ArticleDOI
TL;DR: Different roles for the two glycans present at the E protein during d Dengue virus infection are defined, highlighting the involvement of distinct host functions from mammalian and mosquito cells during dengue virus propagation.
Abstract: Dengue virus envelope protein (E) contains two N-linked glycosylation sites, at Asn-67 and Asn-153. The glycosylation site at position 153 is conserved in most flaviviruses, while the site at position 67 is thought to be unique for dengue viruses. N-linked oligosaccharide side chains on flavivirus E proteins have been associated with viral morphogenesis, infectivity, and tropism. Here, we examined the relevance of each N-linked glycan on dengue virus E protein by removing each site in the context of infectious viral particles. Dengue viruses lacking Asn-67 were able to infect mammalian cells and translate and replicate the viral genome, but production of new infectious particles was abolished. In addition, dengue viruses lacking Asn-153 in the E showed reduced infectivity. In contrast, ablation of one or both glycosylation sites yielded viruses that replicate and propagate in mosquito cells. Furthermore, we found a differential requirement of N-linked glycans for E secretion in mammalian and mosquito cells. While secretion of E lacking Asn-67 was efficient in mosquito cells, secretion of the same protein expressed in mammalian cells was dramatically impaired. Finally, we found that viruses lacking the carbohydrate at position 67 showed reduced infection of immature dendritic cells, suggesting interaction between this glycan and the lectin DC-SIGN. Overall, our data defined different roles for the two glycans present at the E protein during dengue virus infection, highlighting the involvement of distinct host functions from mammalian and mosquito cells during dengue virus propagation.


Journal ArticleDOI
TL;DR: This work brought large-scale laboratory life table techniques to bear on the question of age-dependent mortality in the mosquito vector of dengue virus, Aedes aegypti, and found that mortality was highly age dependent in both sexes.
Abstract: Although variation in mortality is considered by virtually all vector-borne disease specialists to be one of the most important determinants of an arthropod's capacity to transmit pathogens, the operational assumption often is that insect vector mortality is independent of age. Acceptance of the non-senescence assumption leads to the erroneous conclusion that mosquito age is unimportant, results in misleading predictions regarding disease reductions after vector control, and represses study of other aspects of mosquito biology that change with age. We brought large-scale laboratory life table techniques (N > 100,000) to bear on the question of age-dependent mortality in the mosquito vector of dengue virus, Aedes aegypti. Mortality was highly age dependent in both sexes. Mortality was low at young ages (< 10 days old), steadily increased at middle ages, and decelerated at older ages. A newly derived age-dependent model of pathogen transmission shows the importance of young mosquitoes and population age structure to transmission dynamics. Departure from the age-independent mortality paradigm encourages research on overlooked complexities in mosquito biology, the need for innovative methods to study mosquito population dynamics, and the need to study age-dependent changes for an accurate understanding of mosquito biology and pathogen transmission.

Journal ArticleDOI
TL;DR: Historical data provided useful details concerning serotype differences in the natural history of primary DENV infections, and incubation period was negatively correlated with disease severity, potentially reflecting a dose-response mechanism.
Abstract: Background. The natural history of wild-type dengue virus (DENV) infections of humans, including incubation and infectious periods, requires further study. Methods. Two experimental studies in the Philippines of DENV-4 (1924-1925) and DENV-1 (1929-1930) were reexamined. The intrinsic incubation periods were fitted to log-normal distribution using the maximum likelihood method, and the infectious and extrinsic incubation periods were assessed by proportions of successful transmissions causing clinically apparent dengue. Correlations between the intrinsic incubation period and other variables and univariate associations between clinical severity and serotype were also examined. Results. Mean ± SD incubation periods were 6.0 ± 1.4 and 5.7 ± 1.5 days for DENV-4 and DENV-1, respectively. Significant negative correlations were observed between the incubation period and duration of fever (r = -0.43 and -0.33). Even 1 and 2 days before the onset of fever, 80.0% (95% confidence interval [CI], 44.9%-100%) and 25.0% (CI, 0%-67.4%) of biting experiments caused clinically apparent dengue. DENV-1 infections resulted in a significantly longer duration of fever than DENV-4 infections (P<.01). Conclusions. Incubation period was negatively correlated with disease severity, potentially reflecting a dose-response mechanism. The historical data provided useful details concerning serotype differences in the natural history of primary DENV infections.

Journal ArticleDOI
TL;DR: It is suggested that viral burden may not solely explain severe dengue in infants and that neutralizing antibody is a reasonable but not absolute marker of protective immunity in infants.
Abstract: The pathogenesis of dengue in infants is poorly understood. We postulated that dengue severity in infants would be positively associated with markers of viral burden and that maternally derived, neutralizing anti-dengue antibody would have decayed before the age at which infants with dengue presented to the hospital. In 75 Vietnamese infants with primary dengue, we found significant heterogeneity in viremia and NS1 antigenemia at hospital presentation, and these factors were independent of disease grade or continuous measures of disease severity. Neutralizing antibody titers, predicted in each infant at the time of their illness, suggested that the majority of infants (65%) experienced dengue hemorrhagic fever when the maternally derived neutralizing antibody titer had declined to <1 : 20. Collectively, these data have important implications for dengue vaccine research because they suggest that viral burden may not solely explain severe dengue in infants and that neutralizing antibody is a reasonable but not absolute marker of protective immunity in infants.

Journal ArticleDOI
TL;DR: These data provide the first snapshot of gene-expression patterns in peripheral blood during acute dengue and suggest that DSS is associated with attenuation of selected aspects of the innate host response.
Abstract: Responses by peripheral blood leukocytes may contribute to the pathogenesis of dengue hemorrhagic fever (DHF). We used DNA microarrays to reveal transcriptional patterns in the blood of 14 adults with DHF. Acute DHF was defined by an abundance of transcripts from cell cycle- and endoplasmic reticulum (ER)-related genes, suggesting a proliferative response accompanied by ER stress. Transcript-abundance levels for immunoresponse-associated genes, including cell surface markers, immunoglobulin, and innate response elements, were also elevated. Twenty-four genes were identified for which transcript abundance distinguished patients with dengue shock syndrome (DSS) from those without DSS. All the gene transcripts associated with DSS, many of which are induced by type I interferons, were less abundant in patients with DSS than in those without DSS. To our knowledge, these data provide the first snapshot of gene-expression patterns in peripheral blood during acute dengue and suggest that DSS is associated with attenuation of selected aspects of the innate host response.

Journal ArticleDOI
TL;DR: Some clinical presentations of dengue disease and laboratory findings in adults are different from those in children, and adults as well as pediatric cases of DHF need appropriate and prompt case management to reduce the mortality rate ofDHF.

Journal ArticleDOI
TL;DR: In travelers, severe dengue virus infections are not uncommon but may be missed if the WHO classification is strictly applied, and high liver enzyme levels and low platelet counts could serve as indicators of disease severity.
Abstract: BACKGROUND Dengue fever is the most common arboviral disease in travelers. In countries where dengue virus is endemic, sequential (secondary) infections with different dengue virus serotypes are associated with disease severity. Data on severity and secondary infection rates in a population of travelers are lacking. METHODS Intensified surveillance of dengue fever in travelers was performed within the European Network on Surveillance of Imported Infectious Diseases. Data were collected at 14 European clinical referral centers between 2003 and 2005. RESULTS A total of 219 dengue virus infections imported from various regions of endemicity were reported. Serological analysis revealed a secondary immune response in 17%. Spontaneous bleeding was observed in 17 (8%) patients and was associated with increased serum alanine and aspartate aminotransferase levels and lower median platelet counts. Two (0.9%) patients fulfilled the World Health Organization (WHO) case definition for dengue hemorrhagic fever. However, 23 (11%) travelers had severe clinical manifestations (internal hemorrhage, plasma leakage, shock, or marked thrombocytopenia). A secondary immune response was significantly associated with both spontaneous bleeding and other severe clinical manifestations. CONCLUSIONS In travelers, severe dengue virus infections are not uncommon but may be missed if the WHO classification is strictly applied. High liver enzyme levels and low platelet counts could serve as indicators of disease severity.

Journal ArticleDOI
01 Jul 2007-Traffic
TL;DR: The results overall indicate that NS5 nuclear localization through the aNLS is integral to viral infection, with significant implications for other flaviviruses of medical importance, such as yellow fever and West Nile viruses.
Abstract: Dengue virus nonstructural protein 5 (NS5) is a large multifunctional protein with a central role in viral replication. We previously identified two nuclear localization sequences (NLSs) within the central region of dengue virus type-2 (DENV-2) NS5 ('aNLS' and 'bNLS') that are recognized by the importin alpha/beta and importin beta1 nuclear transporters, respectively. Here, we demonstrate the importance of the kinetics of NS5 nuclear localization to virus production for the first time and show that the aNLS is responsible. Site-specific mutations in the bipartite-type aNLS or bNLS region were introduced into a reporter plasmid encoding green fluorescent protein fused to the N-terminus of DENV-2 NS5, as well as into DENV-2 genomic length complementary DNA. Mutation of basic residues in the highly conserved region of the bNLS did not affect nuclear import of NS5. In contrast, mutations in either basic cluster of the aNLS decreased NS5 nuclear accumulation and reduced virus production, with the greatest reduction observed for mutation of the second cluster (K(387)K(388)K(389)); mutagenesis of both clusters abolished NS5 nuclear import and DENV-2 virus production completely. The latter appeared to relate to the impaired ability of virus lacking nuclear-localizing NS5, as compared with wild-type virus expressing nuclear-localizing NS5, to reduce interleukin-8 production as part of the antiviral response. The results overall indicate that NS5 nuclear localization through the aNLS is integral to viral infection, with significant implications for other flaviviruses of medical importance, such as yellow fever and West Nile viruses.

Journal ArticleDOI
TL;DR: Validation of the assays with local clinical samples collected from 2004 to 2006 revealed that there was an 88% positive correlation between virus isolation and RT-PCR with regard to dengue virus detection and a 100% correlation with seroconversion in subsequent samples.
Abstract: Virus detection methodology provides detection of dengue virus in the early phase of the disease. PCR, targeting cDNA derived from viral RNA, has been used as a laboratory-based molecular tool for the detection of Dengue virus. We report the development and use of three real-time one-step reverse transcriptase PCR (RT-PCR) assays to detect dengue cases and serotype the virus involved. The first RT-PCR assay uses SYBR green I as the reporting dye for the purpose of cost-effective screening for dengue virus. The detection limit of the SYBR green I assay was 10 PFU/ml (0.01 equivalent PFU per assay) for all four dengue virus serotypes. The second RT-PCR assay is a duplex fluorogenic probe-based real-time RT-PCR for serotyping clinical samples for dengue viruses. The detection threshold of the probe-based RT-PCR format was 0.1 PFU for serotypes Dengue-1 and Dengue-2, 1 PFU for serotype Dengue-3, and 0.01 PFU for serotype Dengue-4. The third is a fourplex assay that detects any of the four serotypes in a single closed tube with comparable sensitivity. Validation of the assays with local clinical samples collected from 2004 to 2006 revealed that there was an 88% positive correlation between virus isolation and RT-PCR with regard to dengue virus detection and a 100% correlation with seroconversion in subsequent samples. The serotyping results derived from duplex and fourplex assays agree fully with each other and with that derived from immunofluorescence assays.

Journal ArticleDOI
TL;DR: It is found that the initial cellular tropism of DENV in mice is similar to that reported in humans, thereby paving the way for investigation of cellular Tropism and pathogenesis ofDENV in primary and secondary infections.
Abstract: Dengue fever is a mosquitoborne viral illness caused by 4 dengue viruses (DENV-1-4). The cellular tropism of DENV has not been definitively determined, despite its importance for understanding viral pathogenesis and identifying therapeutic targets. To define DENV cellular tropism in a small animal model, 129/Pas mice lacking interferon-alpha/beta and/or-gamma receptors were infected with DENV via a subcutaneous route. During the first week after infection, virus was present in lymph nodes, spleen, bone marrow, and circulating white blood cells. F4/80+CD11b+ macrophages and CD11c+ dendritic cells were demonstrated to be targets for DENV-2 infection in the spleen by flow cytometry directed to structural and nonstructural DENV proteins and by magnetic bead separation followed by strand-specific reverse-transcriptase polymerase chain reaction. We find that the initial cellular tropism of DENV in mice is similar to that reported in humans, thereby paving the way for investigation of cellular tropism and pathogenesis of DENV in primary and secondary infections.