scispace - formally typeset
Search or ask a question
Topic

Dengue virus

About: Dengue virus is a research topic. Over the lifetime, 12671 publications have been published within this topic receiving 461406 citations. The topic is also known as: DENV.


Papers
More filters
Journal ArticleDOI
TL;DR: There is strong evidence that immunoglobulin-like DIII of WNV envelope protein is responsible for binding to receptor on the surface of host cells, and the data suggest that similar attachment molecule(s) or receptor) were used by WNV and Den 2 virus for entry into C6/36 mosquito cells.
Abstract: The envelope glycoprotein located at the outermost surface of the flavivirus particle mediates entry of virus into host cells. In this study, the involvement of domain III of West Nile virus (WNV-DIII) envelope protein in binding to host cell surface was investigated. WNV-DIII was first expressed as a recombinant protein and purified after a solubilization and refolding procedure. The refolded WNV-DIII protein displays a content of β-sheets consistent with known homologous structures of other flavivirus envelope DIII, shown by using circular dichroism analysis. Purified recombinant WNV-DIII protein was able to inhibit WNV entry into Vero cells and C6/36 mosquito cells. Recombinant WNV-DIII only partially blocked the entry of dengue-2 (Den 2) virus into Vero cells. However, entry of Den 2 virus into C6/36 was blocked effectively by recombinant WNV-DIII. Murine polyclonal serum produced against recombinant WNV-DIII protein inhibited infection with WNV and to a much lesser extent with Den 2 virus, as demonstrated by plaque neutralization assays. Together these results provided strong evidence that immunoglobulin-like DIII of WNV envelope protein is responsible for binding to receptor on the surface of host cells. The data also suggest that similar attachment molecule(s) or receptor(s) were used by WNV and Den 2 virus for entry into C6/36 mosquito cells.

176 citations

Journal ArticleDOI
18 Sep 2015-Science
TL;DR: Dengue viruses show as much divergence within a type as between types, which helps explain why immune responses to dengue are highly variable, and it has complex implications for epidemiology, disease, and vaccine deployment.
Abstract: The four genetically divergent dengue virus (DENV) types are traditionally classified as serotypes. Antigenic and genetic differences among the DENV types influence disease outcome, vaccine-induced protection, epidemic magnitude, and viral evolution. We characterized antigenic diversity in the DENV types by antigenic maps constructed from neutralizing antibody titers obtained from African green monkeys and after human vaccination and natural infections. Genetically, geographically, and temporally, diverse DENV isolates clustered loosely by type, but we found that many are as similar antigenically to a virus of a different type as to some viruses of the same type. Primary infection antisera did not neutralize all viruses of the same DENV type any better than other types did up to 2 years after infection and did not show improved neutralization to homologous type isolates. That the canonical DENV types are not antigenically homogeneous has implications for vaccination and research on the dynamics of immunity, disease, and the evolution of DENV.

176 citations

Journal ArticleDOI
TL;DR: The FFA method of virus titration is useful for viruses whose plaques develop slowly, and can be quantitated by FFA on a mosquito cell line (C6/36), which does not support plaque formation.

176 citations

Journal ArticleDOI
01 Apr 2014-eLife
TL;DR: An assay for real-time monitoring of Xrn1 resistance is developed that is used with mutagenesis and RNA folding experiments to show thatXrn1-resistant RNAs adopt a specific fold organized around a three-way junction, directly linking RNA structure to sfRNA production.
Abstract: More than 40% of people around the globe are at risk of being bitten by mosquitoes infected with the virus that causes Dengue fever. Every year, more than 100 million of these individuals are infected. Many develop severe headaches, pain, and fever, but some develop a life-threatening condition where tiny blood vessels in the body begin to leak. If not treated quickly, this more severe manifestation of the illness can lead to death. There are currently no specific therapies or vaccines against Dengue or many other closely related viruses such as West Nile and Japanese Encephalitis. These viruses use instructions encoded in a single strand of RNA to take over an infected cell and to reproduce. The viruses also exploit an enzyme that cells use to destroy RNA to instead produce short stretches of RNA called sfRNAs that, among other things, may help the virus to avoid the immune system of its host. Understanding exactly how Dengue and other viruses thwart this enzyme—which is called Xrn1—may help scientists develop treatments or vaccines for these diseases. Chapman et al. have now shown that Dengue virus RNA contains a number of RNA elements that prevent it being completely degraded by the Xrn1 enzyme. In particular, a junction formed by three RNA helixes is critical for stopping the enzyme in its tracks, leaving the disease-associated sfRNA behind. A single mutation in the Dengue RNA disrupts the structure of the three-helix junction and allows the enzyme to completely destroy the RNA. A similar mutation was also made in the West Nile virus RNA and when human cells were infected with the mutated West Nile virus, the short sfRNAs were not produced. Treatments or vaccines targeting this structure may therefore help reduce illness associated with Dengue and related viruses.

176 citations

Journal ArticleDOI
TL;DR: A pupal cuticle protein was shown to bind WNV envelope protein, leading to inhibition of infection in vitro and the prevention of lethal WNV encephalitis in mice, and an extensive list of targets for controlling flaviviral infection in mosquitoes is provided.
Abstract: West Nile (WNV), dengue (DENV) and yellow fever (YFV) viruses are (re)emerging, mosquito-borne flaviviruses that cause human disease and mortality worldwide. Alterations in mosquito gene expression common and unique to individual flaviviral infections are poorly understood. Here, we present a microarray analysis of the Aedes aegypti transcriptome over time during infection with DENV, WNV or YFV. We identified 203 mosquito genes that were ≥5-fold differentially up-regulated (DUR) and 202 genes that were ≥10-fold differentially down-regulated (DDR) during infection with one of the three flaviviruses. Comparative analysis revealed that the expression profile of 20 DUR genes and 15 DDR genes was quite similar between the three flaviviruses on D1 of infection, indicating a potentially conserved transcriptomic signature of flaviviral infection. Bioinformatics analysis revealed changes in expression of genes from diverse cellular processes, including ion binding, transport, metabolic processes and peptidase activity. We also demonstrate that virally-regulated gene expression is tissue-specific. The overexpression of several virally down-regulated genes decreased WNV infection in mosquito cells and Aedes aegypti mosquitoes. Among these, a pupal cuticle protein was shown to bind WNV envelope protein, leading to inhibition of infection in vitro and the prevention of lethal WNV encephalitis in mice. This work provides an extensive list of targets for controlling flaviviral infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses.

176 citations


Network Information
Related Topics (5)
Virus
136.9K papers, 5.2M citations
87% related
Viral replication
33.4K papers, 1.6M citations
86% related
Drug resistance
28.4K papers, 1.1M citations
84% related
Hepatitis B virus
39.1K papers, 1.2M citations
84% related
Virulence
35.9K papers, 1.3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023546
20221,066
2021780
2020912
2019849
2018930