scispace - formally typeset
Search or ask a question
Topic

Dengue virus

About: Dengue virus is a research topic. Over the lifetime, 12671 publications have been published within this topic receiving 461406 citations. The topic is also known as: DENV.


Papers
More filters
Journal ArticleDOI
01 Dec 2001
TL;DR: Immature dendritic cells were found to be the cells most permissive for dengue infection and maybe early targets for infection, and TNF-alpha mediated maturation is undergoes as a consequence of exposure to the d Dengue virus.
Abstract: Dengue virus infections are an emerging global threat. Severe dengue infection is manifested as dengue hemorrhagic fever and dengue shock syndrome, both of which can be fatal complications. Factors predisposing to complicated disease and pathogenesis of severe infections are discussed. Using immunohistochemistry, immunofluorescence, flow cytometry, and ELISA techniques, we studied the cellular targets of dengue virus infection, at both the clinical (in vivo) and the laboratory (in vitro) level. Resident skin dendritic cells are targets of dengue virus infection as demonstrated in a skin biopsy from a dengue vaccine recipient. We show that factors influencing infection of monocytes/macrophages and dendritic cells are different. Immature dendritic cells were found to be the cells most permissive for dengue infection and maybe early targets for infection. Immature dendritic cells exposed to dengue virus produce TNF-alpha protein. Some of these immature dendritic cells undergo TNF-alpha mediated maturation as a consequence of exposure to the dengue virus.

156 citations

Journal ArticleDOI
TL;DR: A retrospective analysis of sylvatic DENV-2 outbreaks in Senegal shows that amplifications are periodic, with intervening, silent intervals of 5–8 years, and data obtained from investigation of preimaginal mosquitoes suggest a secondary transmission cycle involving mosquitoes other than those identified previously as vectors.
Abstract: After 8 years of silence, dengue virus serotype 2 (DENV-2) reemerged in southeastern Senegal in 1999. Sixty-four DENV-2 strains were isolated in 1999 and 9 strains in 2000 from mosquitoes captured in the forest gallery and surrounding villages. Isolates were obtained from previously described vectors, Aedes furcifer, Ae. taylori, Ae. luteocephalus, and--for the first time in Senegal--from Ae. aegypti and Ae. vittatus. A retrospective analysis of sylvatic DENV-2 outbreaks in Senegal during the last 28 years of entomologic investigations shows that amplifications are periodic, with intervening, silent intervals of 5-8 years. No correlation was found between sylvatic DENV-2 emergence and rainfall amount. For sylvatic DENV-2 vectors, rainfall seems to particularly affect virus amplification that occurs at the end of the rainy season, from October to November. Data obtained from investigation of preimaginal (i.e., nonadult) mosquitoes suggest a secondary transmission cycle involving mosquitoes other than those identified previously as vectors.

156 citations

Journal ArticleDOI
01 Apr 2009-PLOS ONE
TL;DR: DENV-2 envelope (E) protein epitope-specific antigens are developed and immunoglobulin responses to three distinct epitopes in DENV-1 infected human serum samples are measured, important for improving the understanding of dengue disease and immunological correlates of protection.
Abstract: Dengue virus (DENV) is a serious mosquito-borne pathogen causing significant global disease burden, either as classic dengue fever (DF) or in its most severe manifestation dengue hemorrhagic fever (DHF). Nearly half of the world's population is at risk of dengue disease and there are estimated to be millions of infections annually; a situation which will continue to worsen with increasing expansion of the mosquito vectors and epidemic DF/DHF. Currently there are no available licensed vaccines or antivirals for dengue, although significant effort has been directed toward the development of safe and efficacious dengue vaccines for over 30 years. Promising vaccine candidates are in development and testing phases, but a better understanding of immune responses to DENV infection and vaccination is needed. Humoral immune responses to DENV infection are complex and may exacerbate pathogenicity, yet are essential for immune protection. In this report, we develop DENV-2 envelope (E) protein epitope-specific antigens and measure immunoglobulin responses to three distinct epitopes in DENV-2 infected human serum samples. Immunoglobulin responses to DENV-2 infection exhibited significant levels of individual variation. Antibody populations targeting broadly cross-reactive epitopes centered on the fusion peptide in structural domain II were large, highly variable, and greater in primary than in secondary DENV-2 infected sera. E protein domain III cross-reactive immunoglobulin populations were similarly variable and much larger in IgM than in IgG. DENV-2 specific domain III IgG formed a very small proportion of the antibody response yet was significantly correlated with DENV-2 neutralization, suggesting that the highly protective IgG recognizing this epitope in murine studies plays a role in humans as well. This report begins to tease apart complex humoral immune responses to DENV infection and is thus important for improving our understanding of dengue disease and immunological correlates of protection, relevant to DENV vaccine development and testing.

156 citations

Journal ArticleDOI
TL;DR: The putative mechanisms behind the observed efficacy of the vaccine against different forms of the disease are discussed, focusing on the interactions between the infecting virus, pre-existing host immunity and vaccine-induced immune responses.
Abstract: Dengue virus (DENV) is a human pathogen with a large impact on public health. Although no vaccine against DENV is currently licensed, a recombinant vaccine - chimeric yellow fever virus-DENV tetravalent dengue vaccine (CYD-TDV) - has shown efficacy against symptomatic dengue disease in two recent Phase III clinical trials. Safety observations were also recently reported for these trials. In this Opinion article, we review the data from recent vaccine clinical trials and discuss the putative mechanisms behind the observed efficacy of the vaccine against different forms of the disease, focusing on the interactions between the infecting virus, pre-existing host immunity and vaccine-induced immune responses.

156 citations

Journal ArticleDOI
TL;DR: It is found that chikungunya and dengue exhibit different transient dynamics and long-term endemic levels, indicating that risk of invasion or an outbreak can change with vector-virus assemblages.

155 citations


Network Information
Related Topics (5)
Virus
136.9K papers, 5.2M citations
87% related
Viral replication
33.4K papers, 1.6M citations
86% related
Drug resistance
28.4K papers, 1.1M citations
84% related
Hepatitis B virus
39.1K papers, 1.2M citations
84% related
Virulence
35.9K papers, 1.3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023546
20221,066
2021780
2020912
2019849
2018930