scispace - formally typeset
Search or ask a question
Topic

Dengue virus

About: Dengue virus is a research topic. Over the lifetime, 12671 publications have been published within this topic receiving 461406 citations. The topic is also known as: DENV.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that RNAi-mediated depletion of FAM134B significantly enhances both DENV and ZIKV replication at an early stage of the viral life cycle, suggesting that these viruses specifically target these pathways to promote viral replication.
Abstract: The endoplasmic reticulum (ER) is exploited by several diverse viruses during their infectious life cycles. Flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), utilize the ER as a source of membranes to establish their replication organelles and to facilitate their assembly and eventual maturation along the secretory pathway. To maintain normal homeostasis, host cells have evolved highly efficient processes to dynamically regulate the ER, such as through reticulophagy, a selective form of autophagy that leads to ER degradation. Here, we identify the ER-localized reticulophagy receptor FAM134B as a host cell restriction factor for both DENV and ZIKV. We show that RNAi-mediated depletion of FAM134B significantly enhances both DENV and ZIKV replication at an early stage of the viral life cycle. Consistent with its role as an antiviral host factor, we found that several flaviviruses including DENV, ZIKV, and West Nile virus (WNV), utilize their NS3 virally-encoded proteases to directly cleave FAM134B at a single site within its reticulon homology domain (RHD). Mechanistically, we show that NS3-mediated cleavage of FAM134B blocks the formation of ER and viral protein-enriched autophagosomes, suggesting that the cleavage of FAM134B serves to specifically suppress the reticulophagy pathway. These findings thus point to an important role for FAM134B and reticulophagy in the regulation of flavivirus infection and suggest that these viruses specifically target these pathways to promote viral replication.

138 citations

Journal ArticleDOI
TL;DR: Basic epidemiological knowledge on the relationships occurring between mosquito vector activity and the spread of cancer is urgently needed, as well as detailed information about the ability of Culicidae to transfer viruses or tumor cells among hosts over time.
Abstract: Mosquitoes (Diptera: Culicidae) represent a key threat for millions of humans and animals worldwide, vectoring important pathogens and parasites, including malaria, dengue, filariasis, and Zika virus. Besides mosquito-borne diseases, cancers figure among the leading causes of mortality worldwide. It is expected that annual cancer cases will rise from 14 million in 2012 to 22 million within the next two decades. Notably, there are few contrasting evidences of the relationship between cancer and mosquito-borne diseases, with special reference to malaria. However, analogies at the cellular level for the two diseases were reported. Recently, a significant association of malaria incidence with all cancer mortality in 50 USA states was highlighted and may be explained by the ability of Plasmodium to induce suppression of the immune system. However, it was hypothesized that Anopheles vectors may transmit obscure viruses linked with cancer development. The possible activation of cancer pathways by mosquito feeding events is not rare. For instance, the hamster reticulum cell sarcoma can be transmitted through the bites of Aedes aegypti by a transfer of tumor cells. Furthermore, mosquito bites may influence human metabolic pathways following different mechanisms, leading to other viral infections and/or oncogenesis. Hypersensitivity to mosquito bites is routed by a unique pathogenic mechanism linking Epstein-Barr virus infection, allergy, and oncogenesis. During dengue virus infection, high viral titers, macrophage infiltration, and tumor necrosis factor alpha production in the local tissues are the three key important events that lead to hemorrhage. Overall, basic epidemiological knowledge on the relationships occurring between mosquito vector activity and the spread of cancer is urgently needed, as well as detailed information about the ability of Culicidae to transfer viruses or tumor cells among hosts over time. Current evidences on nanodrugs with multipotency against mosquito-borne diseases and cancers are reviewed, with peculiar attention to their mechanisms of action.

138 citations

Journal ArticleDOI
TL;DR: The data suggest that most DENV infections do not induce durable, high-level Zika virus cross-neutralizing antibodies, and that Zika virus–specific antibody populations develop after Zika virus infection irrespective of prior DENV immunity.
Abstract: Cross-reactive antibodies elicited by dengue virus (DENV) infection might affect Zika virus infection and confound serologic tests. Recent data demonstrate neutralization of Zika virus by monoclonal antibodies or human serum collected early after DENV infection. Whether this finding is true in late DENV convalescence (>6 months after infection) is unknown. We studied late convalescent serum samples from persons with prior DENV or Zika virus exposure. Despite extensive cross-reactivity in IgG binding, Zika virus neutralization was not observed among primary DENV infections. We observed low-frequency (23%) Zika virus cross-neutralization in repeat DENV infections. DENV-immune persons who had Zika virus as a secondary infection had distinct populations of antibodies that neutralized DENVs and Zika virus, as shown by DENV-reactive antibody depletion experiments. These data suggest that most DENV infections do not induce durable, high-level Zika virus cross-neutralizing antibodies. Zika virus-specific antibody populations develop after Zika virus infection irrespective of prior DENV immunity.

138 citations

Journal ArticleDOI
TL;DR: The findings showed that DNA-PAH was more rapid and sensitive in the identification of the infecting serotype than the mosquito cell cultures, and the failure of cultures to detect virus particles in sera containing few copies of viral genome or anti-dengue antibodies justified the approach of DNA- PAH to the dengue identification in clinical specimens.

138 citations

Journal ArticleDOI
TL;DR: This work used antibody-depletion techniques to remove DENV-specific antibody sub-populations from primaryDENV-immune human sera and showed that although the removal of DENV E-specific antibodies using recombinant E protein resulted in a partial reduction in DENV enhancement, there was a significant residual enhancement remaining.
Abstract: Dengue viruses (DENV) are mosquito-borne flaviviruses of global importance. DENV exist as four serotypes, DENV1-DENV4. Following a primary infection, individuals produce DENV-specific antibodies that bind only to the serotype of infection and other antibodies that cross-react with two or more serotypes. People exposed to a secondary DENV infection with another serotype are at greater risk of developing more severe forms of dengue disease. The increased risk of severe dengue in people experiencing repeat DENV infections appear to be due, at least in part, to the ability of pre-existing serotype cross-reactive antibodies to form virus-antibody complexes that can productively infect Fcγ receptor-bearing target cells. While the theory of antibody-dependent enhancement (ADE) is supported by several human and small animal model studies, the specific viral antigens and epitopes recognized by enhancing human antibodies after natural infections have not been fully defined. We used antibody-depletion techniques to remove DENV-specific antibody sub-populations from primary DENV-immune human sera. The effects of removing specific antibody populations on ADE were tested both in vitro using K562 cells and in vivo using the AG129 mouse model. Removal of serotype cross-reactive antibodies ablated enhancement of heterotypic virus infection in vitro and antibody-enhanced mortality in vivo. Further depletion studies using recombinant viral antigens showed that although the removal of DENV E-specific antibodies using recombinant E (rE) protein resulted in a partial reduction in DENV enhancement, there was a significant residual enhancement remaining. Competition ADE studies using prM-specific Fab fragments in human immune sera showed that both rE-specific and prM-specific antibodies in primary DENV-immune sera significantly contribute to enhancement of heterotypic DENV infection in vitro. Identification of the targets of DENV-enhancing antibodies should contribute to the development of safe, non-enhancing vaccines against dengue.

138 citations


Network Information
Related Topics (5)
Virus
136.9K papers, 5.2M citations
87% related
Viral replication
33.4K papers, 1.6M citations
86% related
Drug resistance
28.4K papers, 1.1M citations
84% related
Hepatitis B virus
39.1K papers, 1.2M citations
84% related
Virulence
35.9K papers, 1.3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023546
20221,066
2021780
2020912
2019849
2018930