scispace - formally typeset
Search or ask a question
Topic

Dengue virus

About: Dengue virus is a research topic. Over the lifetime, 12671 publications have been published within this topic receiving 461406 citations. The topic is also known as: DENV.


Papers
More filters
Journal ArticleDOI
TL;DR: Dengue-virus-induced vasculopathy and coagulopathy must be involved in the pathogenesis of hemorrhage, and the unbalance between coagulation and fibrinolysis activation increases the likelihood of severe hemorrhage in DHF/DSS.
Abstract: Dengue virus infection causes dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), whose pathogeneses are not clearly understood. Current hypotheses of antibody-dependent enhancement, virus virulence, and IFN-γ/TNFα-mediated immunopathogenesis are insufficient to explain clinical manifestations of DHF/DSS such as thrombocytopenia and hemoconcentration. Dengue virus infection induces transient immune aberrant activation of CD4/CD8 ratio inversion and cytokine overproduction, and infection of endothelial cells and hepatocytes causes apoptosis and dysfunction of these cells. The coagulation and fibrinolysis systems are also activated after dengue virus infection. We propose a new hypothesis for the immunopathogenesis for dengue virus infection. The aberrant immune responses not only impair the immune response to clear the virus, but also result in overproduction of cytokines that affect monocytes, endothelial cells, and hepatocytes. Platelets are destroyed by crossreactive anti-platelet autoantibodies. Dengue-virus-induced vasculopathy and coagulopathy must be involved in the pathogenesis of hemorrhage, and the unbalance between coagulation and fibrinolysis activation increases the likelihood of severe hemorrhage in DHF/DSS. Hemostasis is maintained unless the dysregulation of coagulation and fibrinolysis persists. The overproduced IL-6 might play a crucial role in the enhanced production of anti-platelet or anti-endothelial cell autoantibodies, elevated levels of tPA, as well as a deficiency in coagulation. Capillary leakage is triggered by the dengue virus itself or by antibodies to its antigens. This immunopathogenesis of DHF/DSS can account for specific characteristics of clinical, pathologic, and epidemiological observations in dengue virus infection.

408 citations

Journal ArticleDOI
TL;DR: This serotype-specific, fourplex real-time reverse transcriptase PCR nucleic acid detection assay can be used as a method for differential diagnosis of a specific DEN serotype in viremic dengue patients and as a tool for rapid identification and serotyping of DEN virus isolates.
Abstract: The dengue (DEN) viruses are positive-strand RNA viruses in the genus Flavivirus. Dengue fever and dengue hemorrhagic fever/dengue shock syndrome are important human arboviral diseases caused by infection with one of four closely related but serologically distinct DEN viruses, designated DEN-1, DEN-2, DEN-3, and DEN-4 viruses. All four DEN serotypes are currently co-circulating throughout the subtropics and tropics, and genotypic variation occurs among isolates within a serotype. A real-time quantitative nucleic acid amplification assay has been developed to detect viral RNA of a single DEN virus serotype. Each primer-probe set is DEN serotype specific, yet detects all genotypes in a panel of 7 to 10 representative isolates of a serotype. In single reactions and in fourplex reactions (containing four primer-probe sets in a single reaction mixture), standard dilutions of virus equivalent to 0.002 PFU of DEN-2, DEN-3, and DEN-4 viruses were detected; the limit of detection of DEN-1 virus was 0.5 equivalent PFU. Singleplex and fourplex reactions were evaluated in a panel of 40 viremic serum specimens with 10 specimens per serotype, containing 0.002 to 6,000 equivalent PFU/reaction (0.4 to 1.2 x 10(6) PFU/ml). Viral RNA was detected in all viremic serum specimens in singleplex and fourplex reactions. Thus, this serotype-specific, fourplex real-time reverse transcriptase PCR nucleic acid detection assay can be used as a method for differential diagnosis of a specific DEN serotype in viremic dengue patients and as a tool for rapid identification and serotyping of DEN virus isolates.

408 citations

Journal ArticleDOI
TL;DR: The results provide a path to a subunit vaccine against dengue virus and have implications for the design and monitoring of future vaccine trials in which the induction of antibody to the EDE should be prioritized.
Abstract: Dengue is a rapidly emerging, mosquito-borne viral infection, with an estimated 400 million infections occurring annually. To gain insight into dengue immunity, we characterized 145 human monoclonal antibodies (mAbs) and identified a previously unknown epitope, the envelope dimer epitope (EDE), that bridges two envelope protein subunits that make up the 90 repeating dimers on the mature virion. The mAbs to EDE were broadly reactive across the dengue serocomplex and fully neutralized virus produced in either insect cells or primary human cells, with 50% neutralization in the low picomolar range. Our results provide a path to a subunit vaccine against dengue virus and have implications for the design and monitoring of future vaccine trials in which the induction of antibody to the EDE should be prioritized.

408 citations

Journal ArticleDOI
TL;DR: Parenteral inoculation of Aedes albopictus mosquitoes was found to be a much more sensitive method to detect d Dengue viruses than was plaque assay in LLC-MK2 cells—the most sensitive dengue isolation system known heretofore.
Abstract: Parenteral inoculation of Aedes albopictus mosquitoes was found to be a much more sensitive method to detect dengue viruses than was plaque assay in LLC-MK2 cells—the most sensitive dengue isolation system known heretofore. This was true whether the viruses were present in sera from naturally infected humans or had been “adapted” to LLC-MK2 cells or newborn mice. Male mosquitoes were as susceptible to infection as females and could be used without the safety precautions necessary for the latter. All four types of dengue virus replicated to high titer in both male and female mosquitoes and high titered pools of virus could be prepared from these insects without the possible modifying effects of “adaptation” to cell cultures or mice.

407 citations

Journal ArticleDOI
TL;DR: The authors' findings increase understanding of dengue virus transmission and disease severity in a well-defined cohort population and offer a study design in which to test the efficacy of potential d Dengue vaccines.
Abstract: Dengue viruses are a major cause of morbidity in tropical and subtropical regions of the world. Knowledge about the epidemiology and host determinants of inapparent and severe dengue virus infections is limited. In this paper, the authors report findings from the first 3 years of a prospective study of dengue virus transmission and disease severity conducted in a cohort of 2,119 elementary school children in northern Thailand. A total of 717,106 person-school days were observed from 1998 to 2000. The incidence of inapparent and of symptomatic dengue virus infection was 4.3% and 3.6% in 1998, 3.2% and 3.3% in 1999, and 1.4% and 0.8% in 2000, respectively. Symptomatic dengue virus infection was responsible for 3.2%, 7.1%, and 1.1% of acute-illness school absences in 1998, 1999, and 2000, respectively. The early symptom complex of acute dengue virus infection is protean and difficult to distinguish from other causes of febrile childhood illnesses. The authors' results illustrate the spatial and temporal diversity of dengue virus infection and the burden of dengue disease in schoolchildren in Thailand. Their findings increase understanding of dengue virus transmission and disease severity in a well-defined cohort population and offer a study design in which to test the efficacy of potential dengue vaccines.

407 citations


Network Information
Related Topics (5)
Virus
136.9K papers, 5.2M citations
87% related
Viral replication
33.4K papers, 1.6M citations
86% related
Drug resistance
28.4K papers, 1.1M citations
84% related
Hepatitis B virus
39.1K papers, 1.2M citations
84% related
Virulence
35.9K papers, 1.3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023546
20221,066
2021780
2020912
2019849
2018930