scispace - formally typeset
Search or ask a question
Topic

Dengue virus

About: Dengue virus is a research topic. Over the lifetime, 12671 publications have been published within this topic receiving 461406 citations. The topic is also known as: DENV.


Papers
More filters
Journal ArticleDOI
TL;DR: A framework for selecting Wolbachia strains for field releases and for calculating their likely impact is developed and it is suggested that establishment of wMelPop-infected A. aegypti at a high frequency in a dengue-endemic setting would result in the complete abatement of DENV transmission.
Abstract: Dengue is the most common arboviral infection of humans and is a public health burden in more than 100 countries. Aedes aegypti mosquitoes stably infected with strains of the intracellular bacterium Wolbachia are resistant to dengue virus (DENV) infection and are being tested in field trials. To mimic field conditions, we experimentally assessed the vector competence of A. aegypti carrying the Wolbachia strains wMel and wMelPop after challenge with viremic blood from dengue patients. We found that wMelPop conferred strong resistance to DENV infection of mosquito abdomen tissue and largely prevented disseminated infection. wMel conferred less resistance to infection of mosquito abdomen tissue, but it did reduce the prevalence of mosquitoes with infectious saliva. A mathematical model of DENV transmission incorporating the dynamics of viral infection in humans and mosquitoes was fitted to the data collected. Model predictions suggested that wMel would reduce the basic reproduction number, R0, of DENV transmission by 66 to 75%. Our results suggest that establishment of wMelPop-infected A. aegypti at a high frequency in a dengue-endemic setting would result in the complete abatement of DENV transmission. Establishment of wMel-infected A. aegypti is also predicted to have a substantial effect on transmission that would be sufficient to eliminate dengue in low or moderate transmission settings but may be insufficient to achieve complete control in settings where R0 is high. These findings develop a framework for selecting Wolbachia strains for field releases and for calculating their likely impact.

213 citations

Journal ArticleDOI
TL;DR: Competition-enhanced vector competence appears to result from a reduction in ‘barriers’ to virus infection and dissemination and may contribute to the importance of A. albopictus in dengue transmission.
Abstract: Dengue, the most important human arboviral disease, is transmitted primarily by Aedes aegypti and, to a lesser extent, by Aedes albopictus. The current distributions of these invasive species overlap and are affected by interspecific larval competition in their container habitats. Here we report that competition also enhances dengue infection and dissemination rates in one of these two vector species. We determined the effects of competition on adult A. aegypti and A. albopictus, comparing their susceptibility to infection with a Southeast Asian strain of dengue-2 virus. High levels of intra- or interspecific competition among larvae enhanced the susceptibility of A. albopictus to dengue virus infection and potential for transmission, as indicated by disseminated infections. Doubling the number of competing larvae (A. albopictus or A. aegypti ), led to a significant (more than 60%) increase in the proportion of A. albopictus with disseminated dengue-2 infection. Competition-enhanced vector competence appears to result from a reduction in ‘barriers’ (morphological or physiological) to virus infection and dissemination and may contribute to the importance of A. albopictus in dengue transmission. Similar results for other unrelated arboviruses suggest that larval competition, common in mosquitoes, should be considered in estimates of vector competence for pathogens that infect humans.

212 citations

Journal ArticleDOI
TL;DR: It is proposed that A3 acts by depleting pyrimidine pools, which are crucial for efficient virus replication, and can be linked to a cellular protein, dihydroorotate dehydrogenase (DHODH), which is an enzyme in the de novo p Skyrimidine biosynthesis pathway.
Abstract: Compound A3 was identified in a high-throughput screen for inhibitors of influenza virus replication. It displays broad-spectrum antiviral activity, and at noncytotoxic concentrations it is shown to inhibit the replication of negative-sense RNA viruses (influenza viruses A and B, Newcastle disease virus, and vesicular stomatitis virus), positive-sense RNA viruses (Sindbis virus, hepatitis C virus, West Nile virus, and dengue virus), DNA viruses (vaccinia virus and human adenovirus), and retroviruses (HIV). In contrast to mammalian cells, inhibition of viral replication by A3 is absent in chicken cells, which suggests species-specific activity of A3. Correspondingly, the antiviral activity of A3 can be linked to a cellular protein, dihydroorotate dehydrogenase (DHODH), which is an enzyme in the de novo pyrimidine biosynthesis pathway. Viral replication of both RNA and DNA viruses can be restored in the presence of excess uracil, which promotes pyrimidine salvage, or excess orotic acid, which is the product of DHODH in the de novo pyrimidine biosynthesis pathway. Based on these findings, it is proposed that A3 acts by depleting pyrimidine pools, which are crucial for efficient virus replication.

212 citations

Journal ArticleDOI
TL;DR: Liver damage with elevation of aminotransferases and reactive hepatitis was a common complication of dengue virus infection in these patients.
Abstract: INTRODUCTION: Type 3 dengue virus caused an extensive epidemic in the state of Rio de Janeiro in summer 2002. In some of the patients, it was found in an atypical form with increased aminotransferase levels and acute hepatitis. MATERIAL AND METHODS: An analysis was made of 1,585 serologically confirmed dengue cases at the Dengue Reference Center in Campos dos Goytacazes, Rio de Janeiro state. The grade of hepatic aggression was established according to the alterations in the aminotransferase levels: grade A - normal levels of aminotransferase; grade B - elevated aminotransferase, with increased levels of at least one of the enzymes; grade C - elevated aminotransferase, with the levels of at least one of the enzymes increased to more than three times the reference values; grade D - acute hepatitis, with aminotransferase levels increased to at least 10 times their normal values. RESULTS: Among the 1,585 serologically confirmed dengue cases, 44.5% presented alterations in the aminotransferase levels (grade B), 16.9% presented grade C liver involvement and 3.8% of the patients had progressed to acute hepatitis (grade D). The average values for the rise in aspartate aminotransferase and alanine aminotransferase were 93.3 U/L and 86.0 U/L. The greatest alterations were observed among females (p<0.001), cases of dengue hemorrhagic fever (p<0.001), and cases with sequential infections (p=0.001). CONCLUSIONS: Liver damage with elevation of aminotransferases and reactive hepatitis was a common complication of dengue virus infection in these patients.

212 citations

Journal ArticleDOI
TL;DR: Very potent plasmablast responses that often increased more than 1,000-fold over the baseline levels in healthy volunteers are found, raising the question as to whether these cells might have a role in dengue immunopathology during the ongoing infection.
Abstract: Humoral immune responses are thought to play a major role in dengue virus-induced immunopathology; however, little is known about the plasmablasts producing these antibodies during an ongoing infection. Herein we present an analysis of plasmablast responses in patients with acute dengue virus infection. We found very potent plasmablast responses that often increased more than 1,000-fold over the baseline levels in healthy volunteers. In many patients, these responses made up as much 30% of the peripheral lymphocyte population. These responses were largely dengue virus specific and almost entirely made up of IgG-secreting cells, and plasmablasts reached very high numbers at a time after fever onset that generally coincided with the window where the most serious dengue virus-induced pathology is observed. The presence of these large, rapid, and virus-specific plasmablast responses raises the question as to whether these cells might have a role in dengue immunopathology during the ongoing infection. These findings clearly illustrate the need for a detailed understanding of the repertoire and specificity of the antibodies that these plasmablasts produce.

212 citations


Network Information
Related Topics (5)
Virus
136.9K papers, 5.2M citations
87% related
Viral replication
33.4K papers, 1.6M citations
86% related
Drug resistance
28.4K papers, 1.1M citations
84% related
Hepatitis B virus
39.1K papers, 1.2M citations
84% related
Virulence
35.9K papers, 1.3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023546
20221,066
2021780
2020912
2019849
2018930