Struggling to understand research papers? Don’t panic! Get simple explanations to your questions. Learn more

scispace - formally typeset
SciSpace - Your AI assistant to discover and understand research papers | Product Hunt

Topic

Denial-of-service attack

About: Denial-of-service attack is a(n) research topic. Over the lifetime, 10298 publication(s) have been published within this topic receiving 157891 citation(s). The topic is also known as: DoS & Denial of Service.
Papers
More filters

01 Jan 1998
TL;DR: A simple, effective, and straightforward method for using ingress traffic filtering to prohibit DoS attacks which use forged IP addresses to be propagated from 'behind' an Internet Service Provider's (ISP) aggregation point is discussed.
Abstract: Recent occurrences of various Denial of Service (DoS) attacks which have employed forged source addresses have proven to be a troublesome issue for Internet Service Providers and the Internet community overall. This paper discusses a simple, effective, and straightforward method for using ingress traffic filtering to prohibit DoS attacks which use forged IP addresses to be propagated from 'behind' an Internet Service Provider's (ISP) aggregation point.

1,555 citations


Proceedings ArticleDOI
25 May 2005
TL;DR: This paper proposes four different jamming attack models that can be used by an adversary to disable the operation of a wireless network, and evaluates their effectiveness in terms of how each method affects the ability of a Wireless node to send and receive packets.
Abstract: Wireless networks are built upon a shared medium that makes it easy for adversaries to launch jamming-style attacks. These attacks can be easily accomplished by an adversary emitting radio frequency signals that do not follow an underlying MAC protocol. Jamming attacks can severely interfere with the normal operation of wireless networks and, consequently, mechanisms are needed that can cope with jamming attacks. In this paper, we examine radio interference attacks from both sides of the issue: first, we study the problem of conducting radio interference attacks on wireless networks, and second we examine the critical issue of diagnosing the presence of jamming attacks. Specifically, we propose four different jamming attack models that can be used by an adversary to disable the operation of a wireless network, and evaluate their effectiveness in terms of how each method affects the ability of a wireless node to send and receive packets. We then discuss different measurements that serve as the basis for detecting a jamming attack, and explore scenarios where each measurement by itself is not enough to reliably classify the presence of a jamming attack. In particular, we observe that signal strength and carrier sensing time are unable to conclusively detect the presence of a jammer. Further, we observe that although by using packet delivery ratio we may differentiate between congested and jammed scenarios, we are nonetheless unable to conclude whether poor link utility is due to jamming or the mobility of nodes. The fact that no single measurement is sufficient for reliably classifying the presence of a jammer is an important observation, and necessitates the development of enhanced detection schemes that can remove ambiguity when detecting a jammer. To address this need, we propose two enhanced detection protocols that employ consistency checking. The first scheme employs signal strength measurements as a reactive consistency check for poor packet delivery ratios, while the second scheme employs location information to serve as the consistency check. Throughout our discussions, we examine the feasibility and effectiveness of jamming attacks and detection schemes using the MICA2 Mote platform.

1,252 citations


01 Jan 1998
TL;DR: Three classes of attacks which exploit fundamentally problems with the reliability of passive protocol analysis are defined--insertion, evasion and denial of service attacks--and how to apply these three types of attacks to IP and TCP protocol analysis is described.
Abstract: : All currently available network intrusion detection (ID) systems rely upon a mechanism of data collection passive protocol analysis-which is fundamentally flawed In passive protocol analysis, the intrusion detection system (IDS) unobtrusively watches all traffic on the network, and scrutinizes it for patterns of suspicious activity We outline in this paper two basic problems with the reliability of passive protocol analysis: (1) there isn't enough information on the wire on which to base conclusions about what is actually happening on networked machines, and (2) the fact that the system is passive makes it inherently "fail-open," meaning that a compromise in the availability of the IDS doesn't compromise the availability of the network We define three classes of attacks which exploit these fundamentally problems---insertion, evasion and denial of service attacks--and describe how to apply these three types of attacks to IP and TCP protocol analysis We present the results of tests of the efficacy of our attacks against four of the most popular network intrusion detection systems on the market All of the ID systems tested were found to be vulnerable to each of our attacks This indicates that network ID systems cannot be fully trusted until they are fundamentally redesigned

980 citations


Journal ArticleDOI
TL;DR: The primary intention for this work is to stimulate the research community into developing creative, effective, efficient, and comprehensive prevention, detection, and response mechanisms that address the DDoS flooding problem before, during and after an actual attack.
Abstract: Distributed Denial of Service (DDoS) flooding attacks are one of the biggest concerns for security professionals. DDoS flooding attacks are typically explicit attempts to disrupt legitimate users' access to services. Attackers usually gain access to a large number of computers by exploiting their vulnerabilities to set up attack armies (i.e., Botnets). Once an attack army has been set up, an attacker can invoke a coordinated, large-scale attack against one or more targets. Developing a comprehensive defense mechanism against identified and anticipated DDoS flooding attacks is a desired goal of the intrusion detection and prevention research community. However, the development of such a mechanism requires a comprehensive understanding of the problem and the techniques that have been used thus far in preventing, detecting, and responding to various DDoS flooding attacks. In this paper, we explore the scope of the DDoS flooding attack problem and attempts to combat it. We categorize the DDoS flooding attacks and classify existing countermeasures based on where and when they prevent, detect, and respond to the DDoS flooding attacks. Moreover, we highlight the need for a comprehensive distributed and collaborative defense approach. Our primary intention for this work is to stimulate the research community into developing creative, effective, efficient, and comprehensive prevention, detection, and response mechanisms that address the DDoS flooding problem before, during and after an actual attack.

958 citations


Journal ArticleDOI
01 Jul 2002
TL;DR: The design involves both a local mechanism for detecting and controlling an aggregate at a single router, and a cooperative pushback mechanism in which a router can ask upstream routers to control an aggregate.
Abstract: The current Internet infrastructure has very few built-in protection mechanisms, and is therefore vulnerable to attacks and failures. In particular, recent events have illustrated the Internet's vulnerability to both denial of service (DoS) attacks and flash crowds in which one or more links in the network (or servers at the edge of the network) become severely congested. In both DoS attacks and flash crowds the congestion is due neither to a single flow, nor to a general increase in traffic, but to a well-defined subset of the traffic --- an aggregate. This paper proposes mechanisms for detecting and controlling such high bandwidth aggregates. Our design involves both a local mechanism for detecting and controlling an aggregate at a single router, and a cooperative pushback mechanism in which a router can ask upstream routers to control an aggregate. While certainly not a panacea, these mechanisms could provide some needed relief from flash crowds and flooding-style DoS attacks. The presentation in this paper is a first step towards a more rigorous evaluation of these mechanisms.

797 citations


Network Information
Related Topics (5)
Wireless ad hoc network

49K papers, 1.1M citations

91% related
Encryption

98.3K papers, 1.4M citations

91% related
Key distribution in wireless sensor networks

59.2K papers, 1.2M citations

91% related
Wireless sensor network

142K papers, 2.4M citations

90% related
Network packet

159.7K papers, 2.2M citations

90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202226
2021713
2020780
2019850
2018783
2017695