scispace - formally typeset
Search or ask a question
Topic

Denisovan

About: Denisovan is a research topic. Over the lifetime, 204 publications have been published within this topic receiving 21234 citations. The topic is also known as: Denisovan.


Papers
More filters
Journal ArticleDOI
07 May 2010-Science
TL;DR: The genomic data suggest that Neandertals mixed with modern human ancestors some 120,000 years ago, leaving traces of Ne andertal DNA in contemporary humans, suggesting that gene flow from Neand Bertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other.
Abstract: Neandertals, the closest evolutionary relatives of present-day humans, lived in large parts of Europe and western Asia before disappearing 30,000 years ago. We present a draft sequence of the Neandertal genome composed of more than 4 billion nucleotides from three individuals. Comparisons of the Neandertal genome to the genomes of five present-day humans from different parts of the world identify a number of genomic regions that may have been affected by positive selection in ancestral modern humans, including genes involved in metabolism and in cognitive and skeletal development. We show that Neandertals shared more genetic variants with present-day humans in Eurasia than with present-day humans in sub-Saharan Africa, suggesting that gene flow from Neandertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other.

3,575 citations

Journal ArticleDOI
02 Jan 2014-Nature
TL;DR: It is shown that interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene and a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans is established.
Abstract: We present a high-quality genome sequence of a Neanderthal woman from Siberia. We show that her parents were related at the level of half-siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neanderthal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neanderthals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high-quality Neanderthal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans.

1,691 citations

Journal ArticleDOI
12 Oct 2012-Science
TL;DR: The genomic sequence provides evidence for very low rates of heterozygosity in the Denisova, probably not because of recent inbreeding, but instead because of a small population size, and illuminates the relationships between humans and archaics, including Neandertals, and establishes a catalog of genetic changes within the human lineage.
Abstract: We present a DNA library preparation method that has allowed us to reconstruct a high-coverage (30×) genome sequence of a Denisovan, an extinct relative of Neandertals. The quality of this genome allows a direct estimation of Denisovan heterozygosity indicating that genetic diversity in these archaic hominins was extremely low. It also allows tentative dating of the specimen on the basis of “missing evolution” in its genome, detailed measurements of Denisovan and Neandertal admixture into present-day human populations, and the generation of a near-complete catalog of genetic changes that swept to high frequency in modern humans since their divergence from Denisovans.

1,690 citations

Journal ArticleDOI
23 Dec 2010-Nature
TL;DR: A tooth found in Denisova Cave carries a mitochondrial genome highly similar to that of the finger bone, further indicating that Denisovans have an evolutionary history distinct from Neanderthals and modern humans.
Abstract: Using DNA extracted from a finger bone found in Denisova Cave in southern Siberia, we have sequenced the genome of an archaic hominin to about 1.9-fold coverage. This individual is from a group that shares a common origin with Neanderthals. This population was not involved in the putative gene flow from Neanderthals into Eurasians; however, the data suggest that it contributed 4–6% of its genetic material to the genomes of present-day Melanesians. We designate this hominin population ‘Denisovans’ and suggest that it may have been widespread in Asia during the Late Pleistocene epoch. A tooth found in Denisova Cave carries a mitochondrial genome highly similar to that of the finger bone. This tooth shares no derived morphological features with Neanderthals or modern humans, further indicating that Denisovans have an evolutionary history distinct from Neanderthals and modern humans.

1,506 citations

Journal ArticleDOI
Swapan Mallick1, Swapan Mallick2, Swapan Mallick3, Heng Li3, Mark Lipson2, Iain Mathieson2, Melissa Gymrek, Fernando Racimo4, Mengyao Zhao1, Mengyao Zhao3, Mengyao Zhao2, Niru Chennagiri3, Niru Chennagiri2, Niru Chennagiri1, Susanne Nordenfelt2, Susanne Nordenfelt1, Susanne Nordenfelt3, Arti Tandon2, Arti Tandon3, Pontus Skoglund3, Pontus Skoglund2, Iosif Lazaridis3, Iosif Lazaridis2, Sriram Sankararaman3, Sriram Sankararaman2, Sriram Sankararaman5, Qiaomei Fu2, Qiaomei Fu3, Qiaomei Fu6, Nadin Rohland2, Nadin Rohland3, Gabriel Renaud7, Yaniv Erlich8, Thomas Willems9, Carla Gallo10, Jeffrey P. Spence4, Yun S. Song4, Yun S. Song11, Giovanni Poletti10, Francois Balloux12, George van Driem13, Peter de Knijff14, Irene Gallego Romero15, Aashish R. Jha16, Doron M. Behar17, Claudio M. Bravi18, Cristian Capelli19, Tor Hervig20, Andrés Moreno-Estrada, Olga L. Posukh21, Elena Balanovska, Oleg Balanovsky22, Sena Karachanak-Yankova23, Hovhannes Sahakyan24, Hovhannes Sahakyan17, Draga Toncheva23, Levon Yepiskoposyan24, Chris Tyler-Smith25, Yali Xue25, M. Syafiq Abdullah26, Andres Ruiz-Linares12, Cynthia M. Beall27, Anna Di Rienzo16, Choongwon Jeong16, Elena B. Starikovskaya, Ene Metspalu17, Ene Metspalu28, Jüri Parik17, Richard Villems17, Richard Villems28, Richard Villems29, Brenna M. Henn30, Ugur Hodoglugil31, Robert W. Mahley32, Antti Sajantila33, George Stamatoyannopoulos34, Joseph Wee, Rita Khusainova35, Elza Khusnutdinova35, Sergey Litvinov35, Sergey Litvinov17, George Ayodo36, David Comas37, Michael F. Hammer38, Toomas Kivisild17, Toomas Kivisild39, William Klitz, Cheryl A. Winkler40, Damian Labuda41, Michael J. Bamshad34, Lynn B. Jorde42, Sarah A. Tishkoff11, W. Scott Watkins42, Mait Metspalu17, Stanislav Dryomov, Rem I. Sukernik43, Lalji Singh44, Lalji Singh5, Kumarasamy Thangaraj44, Svante Pääbo7, Janet Kelso7, Nick Patterson3, David Reich3, David Reich2, David Reich1 
13 Oct 2016-Nature
TL;DR: It is demonstrated that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.
Abstract: Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.

1,133 citations


Network Information
Related Topics (5)
Genome
74.2K papers, 3.8M citations
72% related
Chromatin
50.7K papers, 2.7M citations
71% related
Locus (genetics)
42.7K papers, 2M citations
70% related
Gene
211.7K papers, 10.3M citations
70% related
Transcription (biology)
56.5K papers, 2.9M citations
70% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202122
202030
201927
201823
201712
201624