scispace - formally typeset
Topic

Depth map

About: Depth map is a(n) research topic. Over the lifetime, 8449 publication(s) have been published within this topic receiving 135608 citation(s).
Papers
More filters

Journal ArticleDOI
TL;DR: A simple but effective image prior - dark channel prior to remove haze from a single input image is proposed, based on a key observation - most local patches in haze-free outdoor images contain some pixels which have very low intensities in at least one color channel.
Abstract: In this paper, we propose a simple but effective image prior-dark channel prior to remove haze from a single input image. The dark channel prior is a kind of statistics of outdoor haze-free images. It is based on a key observation-most local patches in outdoor haze-free images contain some pixels whose intensity is very low in at least one color channel. Using this prior with the haze imaging model, we can directly estimate the thickness of the haze and recover a high-quality haze-free image. Results on a variety of hazy images demonstrate the power of the proposed prior. Moreover, a high-quality depth map can also be obtained as a byproduct of haze removal.

2,924 citations


Proceedings Article
08 Dec 2014-
Abstract: Predicting depth is an essential component in understanding the 3D geometry of a scene. While for stereo images local correspondence suffices for estimation, finding depth relations from a single image is less straightforward, requiring integration of both global and local information from various cues. Moreover, the task is inherently ambiguous, with a large source of uncertainty coming from the overall scale. In this paper, we present a new method that addresses this task by employing two deep network stacks: one that makes a coarse global prediction based on the entire image, and another that refines this prediction locally. We also apply a scale-invariant error to help measure depth relations rather than scale. By leveraging the raw datasets as large sources of training data, our method achieves state-of-the-art results on both NYU Depth and KITTI, and matches detailed depth boundaries without the need for superpixelation.

2,330 citations


Proceedings ArticleDOI
29 Jul 2007-
TL;DR: A simple modification to a conventional camera is proposed to insert a patterned occluder within the aperture of the camera lens, creating a coded aperture, and introduces a criterion for depth discriminability which is used to design the preferred aperture pattern.
Abstract: A conventional camera captures blurred versions of scene information away from the plane of focus. Camera systems have been proposed that allow for recording all-focus images, or for extracting depth, but to record both simultaneously has required more extensive hardware and reduced spatial resolution. We propose a simple modification to a conventional camera that allows for the simultaneous recovery of both (a) high resolution image information and (b) depth information adequate for semi-automatic extraction of a layered depth representation of the image. Our modification is to insert a patterned occluder within the aperture of the camera lens, creating a coded aperture. We introduce a criterion for depth discriminability which we use to design the preferred aperture pattern. Using a statistical model of images, we can recover both depth information and an all-focus image from single photographs taken with the modified camera. A layered depth map is then extracted, requiring user-drawn strokes to clarify layer assignments in some cases. The resulting sharp image and layered depth map can be combined for various photographic applications, including automatic scene segmentation, post-exposure refocusing, or re-rendering of the scene from an alternate viewpoint.

1,424 citations


Proceedings ArticleDOI
16 Jun 2012-
TL;DR: An actionlet ensemble model is learnt to represent each action and to capture the intra-class variance, and novel features that are suitable for depth data are proposed.
Abstract: Human action recognition is an important yet challenging task. The recently developed commodity depth sensors open up new possibilities of dealing with this problem but also present some unique challenges. The depth maps captured by the depth cameras are very noisy and the 3D positions of the tracked joints may be completely wrong if serious occlusions occur, which increases the intra-class variations in the actions. In this paper, an actionlet ensemble model is learnt to represent each action and to capture the intra-class variance. In addition, novel features that are suitable for depth data are proposed. They are robust to noise, invariant to translational and temporal misalignments, and capable of characterizing both the human motion and the human-object interactions. The proposed approach is evaluated on two challenging action recognition datasets captured by commodity depth cameras, and another dataset captured by a MoCap system. The experimental evaluations show that the proposed approach achieves superior performance to the state of the art algorithms.

1,416 citations


Proceedings ArticleDOI
01 Oct 2016-
TL;DR: A fully convolutional architecture, encompassing residual learning, to model the ambiguous mapping between monocular images and depth maps is proposed and a novel way to efficiently learn feature map up-sampling within the network is presented.
Abstract: This paper addresses the problem of estimating the depth map of a scene given a single RGB image. We propose a fully convolutional architecture, encompassing residual learning, to model the ambiguous mapping between monocular images and depth maps. In order to improve the output resolution, we present a novel way to efficiently learn feature map up-sampling within the network. For optimization, we introduce the reverse Huber loss that is particularly suited for the task at hand and driven by the value distributions commonly present in depth maps. Our model is composed of a single architecture that is trained end-to-end and does not rely on post-processing techniques, such as CRFs or other additional refinement steps. As a result, it runs in real-time on images or videos. In the evaluation, we show that the proposed model contains fewer parameters and requires fewer training data than the current state of the art, while outperforming all approaches on depth estimation. Code and models are publicly available.

1,156 citations


Network Information
Related Topics (5)
Motion estimation

31.2K papers, 699K citations

93% related
Object detection

46.1K papers, 1.3M citations

93% related
Real image

11.7K papers, 255.8K citations

93% related
Motion field

7K papers, 191.2K citations

92% related
Video tracking

37K papers, 735.9K citations

92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20223
2021479
2020685
2019797
2018654
2017572

Top Attributes

Show by:

Topic's top 5 most impactful authors

Yo-Sung Ho

38 papers, 448 citations

Tae-Sun Choi

26 papers, 472 citations

In So Kweon

21 papers, 1.2K citations

Liang-Gee Chen

18 papers, 453 citations

Ping An

18 papers, 121 citations