scispace - formally typeset
Search or ask a question
Topic

Design tool

About: Design tool is a research topic. Over the lifetime, 3864 publications have been published within this topic receiving 46401 citations.


Papers
More filters
Proceedings ArticleDOI
20 Dec 1999
TL;DR: The software architecture of a constraint-based virtual environment that support interactive assembly of component parts, embedded within a task based environment that supports contextual help and allows for the structure of tasks to be easily altered for rapid prototyping is described.
Abstract: Virtual environment technology is now beginning to be recognised as a powerful design tool in industrial sectors such as Manufacturing, Process Engineering, Construction, Automotive and Aerospace industries. It offers the ability to visualise a design from different viewpoints by engineers from different design perspectives providing a powerful design analysis tool for supporting concurrent engineering philosophy. A common weakness of the current commercial virtual environments is the lack of efficient geometric constraint management facilities such as run-time constraint detection and the maintenance of constraint consistencies for supporting accurate part positioning and constrained 3D manipulations. The environments also need to be designed to support the user as they are completing their task. This paper describes the software architecture of a constraint-based virtual environment that supports interactive assembly of component parts, embedded within a task based environment that supports contextual help and allows for the structure of tasks to be easily altered for rapid prototyping.

48 citations

Journal ArticleDOI
TL;DR: A new optimization model based on genetic algorithms is developed to work with commercial finite element software to automate optimization of static criteria (stresses, weight, strength, etc.) with finite element models.

47 citations

DissertationDOI
05 Nov 2012
TL;DR: In this paper, the authors propose a methodology for the generation of design concepts for building envelopes based on biophysical information, with a special attention to the representation of biophysics information and abstraction of principles.
Abstract: Several biomimetic design strategies are available for various applications, though the research on biomimetics as a design tool in architecture is still challenging. This is due to a lack of systematic design tools required for identifying relevant organisms, or natural systems, and abstracting the corresponding generic principles for implementation in design concept generations for building envelopes. A major challenge in current strategies is the filtering of the wide possibilities that nature provides, especially for architects who have limited biophysical background. In order to find design solutions from nature, the requirements of the artificial system have to be defined, and then analogue systems in nature that perform similar functions need to be identified. The design generating tools should support the transitions between the domains, especially the identification of biological analogies and their abstraction. To this end, the current thesis proposes a strategic methodology, referred to as the living envelope methodology, for the generation of design concepts. The proposed methodology provides an exploration and investigation platform for architects. It assists channelling the way from technical challenges, defined by the demands on the living envelope, through functional aspects and various strategies found in nature. Furthermore, the proposed methodology provides several phases of categorizations that funnel at the end into a single imaginary organism/system, referred to as imaginary pinnacle, which has the successful dominant features of the desired living envelope. The various phases and sub-phases of the methodology facilitate the transitions between the various phases of the design process, with a special attention to the representation of biophysical information, identification and abstraction of principles, and their systematic selection. Systematic exploration models are developed for the biophysical information representation, and unique schemes and flow charts that provide user-friendly design tools are developed and presented. For the validation of the methodology and the assessment of its generality, four important environmental aspects that need to be managed by the building envelope are applied to the methodology: (1) air – to manage ventilation, which is required in order to provide high indoor air quality and to prevent air stagnation; (2) heat – to maintain a thermal comfort for the occupants; (3) water – to gain and make use of condensed water in arid areas; and (4) light – to provide a shading system with minimized undesired heat gain and maximized daylight. For each of the four aspects exemplary design concepts are successfully generated. It is worth noting that the aim of investigating these environmental aspects is not to provide detailed design solutions; rather the presented examples of the generated design concepts examine the generality of the implementation of the methodology. In order to further assess the generality of the proposed methodology, a qualitative example that combines all four environmental aspects is introduced. The results of the exemplary design concepts show the advantage of the proposed living envelope methodology. The methodology is capable to generate design concepts with specified initial challenge set by the user (architect). Moreover, the design cases open new perspectives for new possible technical solutions for building envelopes, and the potential to realize a new class of innovation and lay a functional foundation in architecture: a bio-inspired, climatically oriented, and environmentally conscious.

47 citations

Journal ArticleDOI
01 Dec 1990-Energy
TL;DR: In this paper, the authors present an approach to design an integrated renewable energy system (IRES) based on the loss of power-supply probability (LPSP) as the key system parameter and minimization of the initial capital investment.

47 citations

Journal ArticleDOI
TL;DR: In this paper, a design hierarchy for internal heat integrated distillation columns is developed, which includes two phases of design, thermodynamic and hydraulics, and a design procedure is applied using commercial simulation-based design methods.
Abstract: Distillation of close-boiling mixtures, such as propylene–propane and ethyl benzene–styrene systems, is an energy intensive process. Vapor recompression techniques and heat pumping-assisted columns have been adopted for such applications for their high potential of energy savings. In direct vapor recompression columns, the vapors leaving the top of the column are compressed, and in the reboiler of the same column, these vapors are condensed to provide heat for vapor generation. Internal heat integrated distillation columns or iHIDiCs are new developments employing the same concept of vapor recompression. These new column configurations can have significantly lower energy demands than common vapor recompression units. In iHIDiCs, rectifying section is operated at a higher pressure (i.e. higher temperature) than in stripping, and therefore its heat can be used to generate vapor in stripping section. So far, design of these column configurations is performed based on engineering experience, simulation or experimental studies on given cases, including dynamic control simulations. Within previous and most recent research efforts on iHIDiCs, there exist no generalized design methods or systematic approaches for design of these internal integrated distillation columns. The present paper presents a systematic design procedure for iHIDiCs. A design hierarchy for iHIDiCs is developed, which includes two phases of design, thermodynamic and hydraulics. This design procedure is applied using commercial simulation-based design methods. In thermodynamic design, temperature profiles for column sections are used as a design tool to guide designers. On the other hand, hydraulic capacities of stages for heat exchange are analyzed to determine the maximum physical space area available for heat exchange. Hence, feasibility regions for both heat integration and hydraulic design are identified.

47 citations


Network Information
Related Topics (5)
Software
130.5K papers, 2M citations
82% related
User interface
85.4K papers, 1.7M citations
80% related
Robustness (computer science)
94.7K papers, 1.6M citations
79% related
Energy consumption
101.9K papers, 1.6M citations
79% related
Control theory
299.6K papers, 3.1M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233
20227
202184
2020133
2019139
2018157