scispace - formally typeset
Search or ask a question

Showing papers on "Destination-Sequenced Distance Vector routing published in 2012"


Proceedings ArticleDOI
01 Dec 2012
TL;DR: A survey of state-of-the-art routing techniques in Wireless Sensor Networks (WSNs) and compares the routing protocols against parameters such as power consumption, scalability, mobility, optimal routing and data aggregation.
Abstract: This paper presents a survey of state-of-the-art routing techniques in Wireless Sensor Networks (WSNs). Compared with traditional wireless networks, WSNs are characterized with denser levels of node deployment, higher unreliability of sensor nodes and severe power, computation and memory constraints. Various design challenges such as energy efficiency, data delivery models, quality of service, overheads etc., for routing protocols in WSNs are highlighted. We addressed most of the proposed routing methods along with scheme designs, benefits and result analysis wherever possible. The routing protocols discussed are classified into seven categories such as Data centric routing, Hierarchical routing, Location based routing, Negotiation based routing, Multipath based routing, Quality of Service (QoS) routing and Mobility based routing. This paper also compares the routing protocols against parameters such as power consumption, scalability, mobility, optimal routing and data aggregation. The paper concludes with possible open research issues in WSNs.

1,168 citations


Journal ArticleDOI
TL;DR: A survey of the routing algorithms proposed for wireless networks is presented, which offers a comprehensive review of various categories such as Geographical, Geo-casting, Hierarchical, Multi-path, Power-aware, and Hybrid routing algorithms.

278 citations


Journal ArticleDOI
TL;DR: A new metric is introduced that detects the quality of friendships between nodes accurately and defines the community of each node as the set of nodes having close friendship relations with this node either directly or indirectly.
Abstract: Routing in delay tolerant networks is a challenging problem due to the intermittent connectivity between nodes resulting in the frequent absence of end-to-end path for any source-destination pair at any given time. Recently, this problem has attracted a great deal of interest and several approaches have been proposed. Since Mobile Social Networks (MSNs) are increasingly popular type of Delay Tolerant Networks (DTNs), making accurate analysis of social network properties of these networks is essential for designing efficient routing protocols. In this paper, we introduce a new metric that detects the quality of friendships between nodes accurately. Utilizing this metric, we define the community of each node as the set of nodes having close friendship relations with this node either directly or indirectly. We also present Friendship-Based Routing in which periodically differentiated friendship relations are used in forwarding of messages. Extensive simulations on both real and synthetic traces show that the introduced algorithm is more efficient than the existing algorithms.

211 citations


Journal ArticleDOI
TL;DR: This paper deals with the optimal parameter setting of the optimized link state routing (OLSR), which is a well-known mobile ad hoc network routing protocol, by defining an optimization problem and finding automatically optimal configurations of this routing protocol.
Abstract: Recent advances in wireless technologies have given rise to the emergence of vehicular ad hoc networks (VANETs). In such networks, the limited coverage of WiFi and the high mobility of the nodes generate frequent topology changes and network fragmentations. For these reasons, and taking into account that there is no central manager entity, routing packets through the network is a challenging task. Therefore, offering an efficient routing strategy is crucial to the deployment of VANETs. This paper deals with the optimal parameter setting of the optimized link state routing (OLSR), which is a well-known mobile ad hoc network routing protocol, by defining an optimization problem. This way, a series of representative metaheuristic algorithms (particle swarm optimization, differential evolution, genetic algorithm, and simulated annealing) are studied in this paper to find automatically optimal configurations of this routing protocol. In addition, a set of realistic VANET scenarios (based in the city of Malaga) have been defined to accurately evaluate the performance of the network under our automatic OLSR. In the experiments, our tuned OLSR configurations result in better quality of service (QoS) than the standard request for comments (RFC 3626), as well as several human experts, making it amenable for utilization in VANET configurations.

194 citations


Journal ArticleDOI
TL;DR: This work provides an overview of existing multicast routing mechanisms based on routing categories that helps in multimedia communication over MANETs and point to directions for future research and development.

188 citations


Journal ArticleDOI
TL;DR: This proposed approach tries to account for link stability and for minimum drain rate energy consumption and a novel routing protocol called Link-stAbility and Energy aware Routing protocols (LAER) is proposed.
Abstract: Energy awareness for computation and protocol management is becoming a crucial factor in the design of protocols and algorithms. On the other hand, in order to support node mobility, scalable routing strategies have been designed and these protocols try to consider the path duration in order to respect some QoS constraints and to reduce the route discovery procedures. Often energy saving and path duration and stability can be two contrasting efforts and trying to satisfy both of them can be very difficult. In this paper, a novel routing strategy is proposed. This proposed approach tries to account for link stability and for minimum drain rate energy consumption. In order to verify the correctness of the proposed solution a biobjective optimization formulation has been designed and a novel routing protocol called Link-stAbility and Energy aware Routing protocols (LAER) is proposed. This novel routing scheme has been compared with other three protocols: PERRA, GPSR, and E-GPSR. The protocol performance has been evaluated in terms of Data Packet Delivery Ratio, Normalized Control Overhead, Link duration, Nodes lifetime, and Average energy consumption.

175 citations


Journal ArticleDOI
TL;DR: This article tackles the problem of opportunistic data transfer in mobile ad hoc networks with a pure network layer scheme that can be built atop off-the-shelf wireless networking equipment, and test CORMAN and compare it to AODV, and observe significant performance improvement in varying mobile settings.
Abstract: The link quality variation of wireless channels has been a challenging issue in data communications until recent explicit exploration in utilizing this characteristic. The same broadcast transmission may be perceived significantly differently, and usually independently, by receivers at different geographic locations. Furthermore, even the same stationary receiver may experience drastic link quality fluctuation over time. The combination of link-quality variation with the broadcasting nature of wireless channels has revealed a direction in the research of wireless networking, namely, cooperative communication. Research on cooperative communication started to attract interests in the community at the physical layer but more recently its importance and usability have also been realized at upper layers of the network protocol stack. In this article, we tackle the problem of opportunistic data transfer in mobile ad hoc networks. Our solution is called Cooperative Opportunistic Routing in Mobile Ad hoc Networks (CORMAN). It is a pure network layer scheme that can be built atop off-the-shelf wireless networking equipment. Nodes in the network use a lightweight proactive source routing protocol to determine a list of intermediate nodes that the data packets should follow en route to the destination. Here, when a data packet is broadcast by an upstream node and has happened to be received by a downstream node further along the route, it continues its way from there and thus will arrive at the destination node sooner. This is achieved through cooperative data communication at the link and network layers. This work is a powerful extension to the pioneering work of ExOR. We test CORMAN and compare it to AODV, and observe significant performance improvement in varying mobile settings.

173 citations


Journal ArticleDOI
TL;DR: This paper proposes gradient routing with two-hop information for industrial wireless sensor networks to enhance real-time performance with energy efficiency and reduce end-to-end delay.
Abstract: This paper proposes gradient routing with two-hop information for industrial wireless sensor networks to enhance real-time performance with energy efficiency. Two-hop information routing is adopted from the two-hop velocity-based routing, and the proposed routing algorithm is based on the number of hops to the sink instead of distance. Additionally, an acknowledgment control scheme reduces energy consumption and computational complexity. The simulation results show a reduction in end-to-end delay and enhanced energy efficiency.

155 citations


Journal ArticleDOI
TL;DR: The performance analysis of the protocols is carried out on Adhoc On-demand Distance Vector, Dynamic Source Routing, Optimized Link State Routing and Destination Sequenced Distance Vector protocols using NS2 simulator.

152 citations


Journal ArticleDOI
TL;DR: In this article, an algorithm that can tackle time dependent vehicle routing problems with hard or soft time windows without any alteration in its structure is presented, and experimental results indicate that average computational time increases proportionally to the number of customers squared.
Abstract: An algorithm that can tackle time dependent vehicle routing problems with hard or soft time windows without any alteration in its structure is presented. Analytical and experimental results indicate that average computational time increases proportionally to the number of customers squared. New replicable test problems that capture the typical speed variations of congested urban settings are proposed. Solution quality, time window perturbations, and computational time results are discussed as well as a method to study the impact of perturbations by problem type. The algorithm efficiency and simplicity is well suited for urban areas where fast running times may be required.

152 citations


Proceedings ArticleDOI
Jie Wu1, Yunsheng Wang1
25 Mar 2012
TL;DR: This paper uses the internal social features of each node in the network to perform the routing process, and offers two special multi-path routing schemes: node-disjoint-based routing and delegation- based routing.
Abstract: Most routing protocols for delay tolerant networks resort to the sufficient state information, including trajectory and contact information, to ensure routing efficiency. However, state information tends to be dynamic and hard to obtain without a global and/or long-term collection process. In this paper, we use the internal social features of each node in the network to perform the routing process. This approach is motivated from several social contact networks, such as the Infocom 2006 trace, where people contact each other more frequently if they have more social features in common. Our approach includes two unique processes: social feature extraction and multi-path routing. In social feature extraction, we use entropy to extract the m most informative social features to create a feature space (F-space): (F 1 , F 2 , …, F m ), where F i corresponds to a feature. The routing method then becomes a hypercube-based feature matching process where the routing process is a step-by-step feature difference resolving process. We offer two special multi-path routing schemes: node-disjoint-based routing and delegation-based routing. Extensive simulations on both real and synthetic traces are conducted in comparison with several existing approaches, including spray-and-wait routing and spray-and-focus routing.

Journal ArticleDOI
TL;DR: A new routing method for WSNs to extend network lifetime using a combination of a fuzzy approach and an A-star algorithm to determine an optimal routing path from the source to the destination by favoring the highest remaining battery power, minimum number of hops, and minimum traffic loads is proposed.
Abstract: Wireless sensor networks (WSNs) are used in many applications to gather sensitive information which is then forwarded to an analysis center. Resource limitations have to be taken into account when designing a WSN infrastructure. Unbalanced energy consumption is an inherent problem in WSNs, characterized by multihop routing and a many-to-one traffic pattern. This uneven energy dissipation can significantly reduce network lifetime. This paper proposes a new routing method for WSNs to extend network lifetime using a combination of a fuzzy approach and an A-star algorithm. The proposal is to determine an optimal routing path from the source to the destination by favoring the highest remaining battery power, minimum number of hops, and minimum traffic loads. To demonstrate the effectiveness of the proposed method in terms of balancing energy consumption and maximization of network lifetime, we compare our approach with the A-star search algorithm and fuzzy approach using the same routing criteria in two different topographical areas. Simulation results demonstrate that the network lifetime achieved by the proposed method could be increased by nearly 25% more than that obtained by the A-star algorithm and by nearly 20% more than that obtained by the fuzzy approach.

Journal ArticleDOI
TL;DR: This paper proposes a new hybrid location-based routing protocol that is particularly designed to address the issue of vehicle mobility and shows through analysis and simulation that the protocol is scalable and has an optimal overhead, even in the presence of high location errors.
Abstract: Vehicular ad hoc networks (VANETs) are highly mobile wireless networks that are designed to support vehicular safety, traffic monitoring, and other commercial applications. Within VANETs, vehicle mobility will cause the communication links between vehicles to frequently be broken. Such link failures require a direct response from the routing protocols, leading to a potentially excessive increase in the routing overhead and degradation in network scalability. In this paper, we propose a new hybrid location-based routing protocol that is particularly designed to address this issue. Our new protocol combines features of reactive routing with location-based geographic routing in a manner that efficiently uses all the location information available. The protocol is designed to gracefully exit to reactive routing as the location information degrades. We show through analysis and simulation that our protocol is scalable and has an optimal overhead, even in the presence of high location errors. Our protocol provides an enhanced yet pragmatic location-enabled solution that can be deployed in all VANET-type environments.

Journal ArticleDOI
TL;DR: A light-weight trust-based routing protocol that takes care of two kinds of attacks, namely, the blackhole attack and the grey hole attack and is incorporated in any routing protocol.
Abstract: Mobile ad hoc networks (MANETs) were originally designed for a cooperative environment. To use them in hostile environments, trust-based routing can be used, where instead of establishing the shortest routes as done in traditional routing protocols, most trusted routes are established. In this study, the authors present a light-weight trust-based routing protocol. It is light-weight in the sense that the intrusion detection system (IDS) used for estimating the trust that one node has for another, consumes limited computational resource. Moreover, it uses only local information thereby ensuring scalability. Our light-weight IDS takes care of two kinds of attacks, namely, the blackhole attack and the grey hole attack. Whereas our proposed approach can be incorporated in any routing protocol, the authors have used AODV as the base routing protocol to evaluate our proposed approach and give a performance analysis.

Patent
21 May 2012
TL;DR: In this article, a system and method adds and manages entries on a list of entries of routing information to allow the top entry to be used for routing to a destination corresponding to the list.
Abstract: A system and method adds and manages entries on a list of entries of routing information to allow the top entry to be used for routing to a destination corresponding to the list. Costs of a wireless link may be a function of the success rate experienced on that wireless link.

Proceedings ArticleDOI
03 Dec 2012
TL;DR: Multi-label Automatic Routing (MAR), the first compact routing protocol that attains a low path stretch (ratio of selected path length to the optimal path length) while maintaining a low routing state for mobile networks, is presented.
Abstract: We present Multi-label Automatic Routing (MAR), the first compact routing protocol that attains a low path stretch (ratio of selected path length to the optimal path length) while maintaining a low routing state for mobile networks. MAR is resilient to node movements in the network. In MAR, nodes assign themselves labels based on their location in the network through a distributed algorithm. Distributed Hash Tables (DHTs) for the node to label mappings are established in some anchor nodes. Once the labels are established, the routing is automatic based on the positional labels of the nodes and DHT lookups. This eliminates flooding completely. Unlike traditional routing protocols MAR does not need destinations-based routing tables. Hence, MAR has a small routing state. With the use of multiple labels per node, the average path length is close to the shortest path and there are multiple paths between source and destination nodes. In Qualnet simulations MAR shows a path stretch close to or better than traditional table-driven and on-demand protocols like OLSR and AODV. Simulation results also show shorter end-to-end delays due to the automatic routing. The delivery ratio of MAR is comparable to these traditional protocols but with a significantly lower network overhead.

Journal ArticleDOI
TL;DR: Both theoretical analysis and simulation results show that POR achieves excellent performance even under high node mobility with acceptable overhead and the new void handling scheme also works well.
Abstract: This paper addresses the problem of delivering data packets for highly dynamic mobile ad hoc networks in a reliable and timely manner. Most existing ad hoc routing protocols are susceptible to node mobility, especially for large-scale networks. Driven by this issue, we propose an efficient Position-based Opportunistic Routing (POR) protocol which takes advantage of the stateless property of geographic routing and the broadcast nature of wireless medium. When a data packet is sent out, some of the neighbor nodes that have overheard the transmission will serve as forwarding candidates, and take turn to forward the packet if it is not relayed by the specific best forwarder within a certain period of time. By utilizing such in-the-air backup, communication is maintained without being interrupted. The additional latency incurred by local route recovery is greatly reduced and the duplicate relaying caused by packet reroute is also decreased. In the case of communication hole, a Virtual Destination-based Void Handling (VDVH) scheme is further proposed to work together with POR. Both theoretical analysis and simulation results show that POR achieves excellent performance even under high node mobility with acceptable overhead and the new void handling scheme also works well.

Journal ArticleDOI
TL;DR: This paper proposes predict and relay (PER), an efficient routing algorithm for DTNs, where nodes determine the probability distribution of future contact times and choose a proper next-hop in order to improve the end-to-end delivery probability.
Abstract: Routing is one of the most challenging, open problems in disruption-tolerant networks (DTNs) because of the short-lived wireless connectivity environment. To deal with this issue, researchers have investigated routing based on the prediction of future contacts, taking advantage of nodes' mobility history. However, most of the previous work focused on the prediction of whether two nodes would have a contact, without considering the time of the contact. This paper proposes predict and relay (PER), an efficient routing algorithm for DTNs, where nodes determine the probability distribution of future contact times and choose a proper next-hop in order to improve the end-to-end delivery probability. The algorithm is based on two observations: one is that nodes usually move around a set of well-visited landmark points instead of moving randomly; the other is that node mobility behavior is semi-deterministic and could be predicted once there is sufficient mobility history information. Specifically, our approach employs a time-homogeneous semi-Markov process model that describes node mobility as transitions between landmarks. Then, we extend it to handle the scenario where we consider the transition time between two landmarks. A simulation study shows that this approach improves the delivery ratio and also reduces the delivery latency compared to traditional DTN routing schemes.

Journal ArticleDOI
01 Jul 2012
TL;DR: A reactive routing protocol for mobile cognitive radio ad hoc networks able to achieve three goals to avoid interferences to primary users during both route formation and data forwarding and to take advantage of the availability of multiple channels to improve the overall performance.
Abstract: Although more than a decade has passed from the proposal of the Cognitive Radio paradigm, in these years the research has mainly focused on physical and medium access issues, and few recent works focused on the problem of routing in cognitive networks. This paper addresses such a problem by evaluating the feasibility of reactive routing for mobile cognitive radio ad hoc networks. More specifically, we design a reactive routing protocol for the considered scenario able to achieve three goals: (i) to avoid interferences to primary users during both route formation and data forwarding; (ii) to perform a joint path and channel selection at each forwarder; (iii) to take advantage of the availability of multiple channels to improve the overall performance. Two different versions of the same protocol, referred to as Cognitive Ad-hoc On-demand Distance Vector (CAODV), are presented. The first version exploits inter-route spectrum diversity, while the second one exploits intra-route spectrum diversity. An exhaustive performance analysis of both the versions of the proposed protocol in different environments and network conditions has been carried out via numerical simulations. The results state the suitability of the proposed protocol for small mobile cognitive radio ad hoc networks.

Journal ArticleDOI
TL;DR: This paper mathematically analyzes the power consumption of the proposed algorithm, then demonstrates that the proposed scheme is able to extend the network lifetime by alleviating the hotspot problem.

Journal ArticleDOI
TL;DR: This paper presents a comprehensive overview of the known topology-agnostic routing algorithms, classify these algorithms by their most important properties, and evaluate them consistently, providing significant insight into the algorithms and their appropriateness for different on- and off-chip environments.
Abstract: Most standard cluster interconnect technologies are flexible with respect to network topology. This has spawned a substantial amount of research on topology-agnostic routing algorithms, which make no assumption about the network structure, thus providing the flexibility needed to route on irregular networks. Actually, such an irregularity should be often interpreted as minor modifications of some regular interconnection pattern, such as those induced by faults. In fact, topology-agnostic routing algorithms are also becoming increasingly useful for networks on chip (NoCs), where faults may make the preferred 2D mesh topology irregular. Existing topology-agnostic routing algorithms were developed for varying purposes, giving them different and not always comparable properties. Details are scattered among many papers, each with distinct conditions, making comparison difficult. This paper presents a comprehensive overview of the known topology-agnostic routing algorithms. We classify these algorithms by their most important properties, and evaluate them consistently. This provides significant insight into the algorithms and their appropriateness for different on- and off-chip environments.

Journal ArticleDOI
TL;DR: Experimental results demonstrate that the CCM algorithm outperforms both LEACH and PEGASIS in terms of the product of consumed energy and delay, weighting the overall performance of both energy consumption and transmission delay.
Abstract: Wireless sensor networks (WSNs) are an emerging technology for monitoring physical world. Different from the traditional wireless networks and ad hoc networks, the energy constraint of WSNs makes energy saving become the most important goal of various routing algorithms. For this purpose, a cluster based routing algorithm LEACH (low energy adaptive clustering hierarchy) has been proposed to organize a sensor network into a set of clusters so that the energy consumption can be evenly distributed among all the sensor nodes. Periodical cluster head voting in LEACH, however, consumes non-negligible energy and other resources. While another chain-based algorithm PEGASIS (power- efficient gathering in sensor information systems) can reduce such energy consumption, it causes a longer delay for data transmission. In this paper, we propose a routing algorithm called CCM (Chain-Cluster based Mixed routing), which makes full use of the advantages of LEACH and PEGASIS, and provide improved performance. It divides a WSN into a few chains and runs in two stages. In the first stage, sensor nodes in each chain transmit data to their own chain head node in parallel, using an improved chain routing protocol. In the second stage, all chain head nodes group as a cluster in a self- organized manner, where they transmit fused data to a voted cluster head using the cluster based routing. Experimental results demonstrate that our CCM algorithm outperforms both LEACH and PEGASIS in terms of the product of consumed energy and delay, weighting the overall performance of both energy consumption and transmission delay.

Journal ArticleDOI
TL;DR: The experimental results show that the proposed variable neighbourhood search (VNS) provides an average 23.77% improvement in total transportation cost over the best known results based on minimizing transportation distance.
Abstract: The purpose of this paper is to propose a variable neighbourhood search (VNS) for solving the multi-depot vehicle routing problem with loading cost (MDVRPLC) The MDVRPLC is the combination of multi-depot vehicle routing problem (MDVRP) and vehicle routing problem with loading cost (VRPLC) which are both variations of the vehicle routing problem (VRP) and occur only rarely in the literature In fact, an extensive literature search failed to find any literature related specifically to the MDVRPLC The proposed VNS comprises three phases First, a stochastic method is used for initial solution generation Second, four operators are randomly selected to search neighbourhood solutions Third, a criterion similar to simulated annealing (SA) is used for neighbourhood solution acceptance The proposed VNS has been test on 23 MDVRP benchmark problems The experimental results show that the proposed method provides an average 2377% improvement in total transportation cost over the best known results based on minimizing transportation distance The results show that the proposed method is efficient and effective in solving problems

Proceedings ArticleDOI
17 Aug 2012
TL;DR: In this article, potential based routing (PBR) is introduced to achieve several design goals such as availability, adaptability, diversity, and robustness for ICN, and the performance of a random caching policy is examined.
Abstract: Information Centric Networking (ICN) has shown possibilities to solve several problems of the Internet. At the same time, some problems need to be tackled in order to advance this promising architecture. In this paper we address two of the problems, namely routing and content caching. For the routing, we introduce the Potential Based Routing (PBR) to achieve several design goals such as availability, adaptability, diversity, and robustness. In addition, we examine the performance of a random caching policy which can be a promising candidate for ICN. The integrated system of both PBR and a caching policy is named the Cache Aware Target idenTification (CATT). Simulation results demonstrate that PBR with replications located on less than 1% of total nodes can achieve a near optimal routing performance (close to the shortest path routing) even though a request message is randomly forwarded.

Journal ArticleDOI
TL;DR: This paper proposes HYbrid Multi-hop routiNg (HYMN) algorithm, which is a hybrid of the two contemporary multi-hop routing algorithm architectures, namely, flat multi- Hop routing that utilizes efficient transmission distances, and hierarchical multi-Hop routing algorithms that capitalizes on data aggregation.
Abstract: Power-aware routing in Wireless Sensor Networks (WSNs) is designed to adequately prolong the lifetime of severely resource-constrained ad hoc wireless sensor nodes}. Recent research has identified the energy hole problem in single sink-based WSNs, a characteristic of the many-to-one (convergecast) traffic patterns. In this paper, we propose HYbrid Multi-hop routiNg (HYMN) algorithm, which is a hybrid of the two contemporary multi-hop routing algorithm architectures, namely, flat multi-hop routing that utilizes efficient transmission distances, and hierarchical multi-hop routing algorithms that capitalizes on data aggregation. We provide rigorous mathematical analysis for HYMN-optimize it and model its power consumption. In addition, through extensive simulations, we demonstrate the effective performance of HYMN in terms of superior connectivity.

Journal ArticleDOI
TL;DR: This paper presents two new routing protocols for mobile sensor networks, viz. power‐controlled routing (PCR) and its enhanced version, i.e. Enhanced Power‐Controlled Routing (EPCR), and is suggesting a packet loss recovery mechanism for the PCR and EPCR.
Abstract: This paper presents two new routing protocols for mobile sensor networks, viz. power-controlled routing (PCR) and its enhanced version, i.e. Enhanced Power-Controlled Routing (EPCR). In both the protocols, fixed transmission power is employed in the clustering phase but when ordinary nodes are about to send their data to their respective cluster-heads, they change their transmission power according to their distance from their cluster-head. While in PCR, the nodes are associated with the cluster-head on the basis of weight, in EPCR it is done on the basis of distance. In addition to the protocols, we are suggesting a packet loss recovery mechanism for the PCR and EPCR. Both protocols work well for both mobile and static networks and are designed to achieve high network lifetime, high packet delivery ratio, and high network throughput. These protocols are extensively simulated using mass mobility model, with different speeds and different number of nodes to evaluate their performance. Simulation results show that both PCR and EPCR are successful in achieving their objectives by using variable transmission powers and smart clustering. Copyright © 2011 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: A distributed adaptive opportunistic routing scheme for multihop wireless ad hoc networks that utilizes a reinforcement learning framework to opportunistically route the packets even in the absence of reliable knowledge about channel statistics and network model is proposed.
Abstract: A distributed adaptive opportunistic routing scheme for multihop wireless ad hoc networks is proposed. The proposed scheme utilizes a reinforcement learning framework to opportunistically route the packets even in the absence of reliable knowledge about channel statistics and network model. This scheme is shown to be optimal with respect to an expected average per-packet reward criterion. The proposed routing scheme jointly addresses the issues of learning and routing in an opportunistic context, where the network structure is characterized by the transmission success probabilities. In particular, this learning framework leads to a stochastic routing scheme that optimally "explores" and "exploits" the opportunities in the network.

Journal ArticleDOI
TL;DR: Performance evaluation is conducted through simulations, and the results reveal the benefits of adopting the proposed routing metric for cognitive radio ad hoc networks, known as OPERA.
Abstract: Two main issues affect the existing routing metrics for cognitive radio ad hoc networks: i) they are often based on heuristics, and thus they have not been proved to be optimal; ii) they do not account for the route diversity effects, and thus they are not able to measure the actual cost of a route. In this paper, an optimal routing metric for cognitive radio ad hoc networks, referred to as OPERA, is proposed. OPERA is designed to achieve two features: i) Optimality: OPERA is optimal when combined with both Dijkstra and Bellman-Ford based routing protocols; ii) Accuracy: OPERA exploits the route diversity provided by the intermediate nodes to measure the actual end-to-end delay, by taking explicitly into account the unique characteristics of cognitive radio networks. A closed-form expression of the proposed routing metric is analytically derived for both static and mobile networks, and its optimality is proved rigorously. Performance evaluation is conducted through simulations, and the results reveal the benefits of adopting the proposed routing metric for cognitive radio ad hoc networks.

Proceedings ArticleDOI
06 Sep 2012
TL;DR: Find ways to quantify the routing metrics so that they can be combined in an additive or lexical manner and use extensive simulation results to evaluate the impact of several routing metrics on the achieved performance.
Abstract: The diversity of applications that current and emerging Wireless Sensor Networks (WSNs) are called to support imposes different requirements on the underlying network with respect to delay and loss, while at the same time the WSN imposes its own intricacies. The satisfaction of these requirements highly depends on the metric upon which the forwarding routes are decided. In this view, the IETF ROLL group has proposed the RPL routing protocol, which can flexibly work on various routing metrics, as long as they hold specific properties. The system implementer/user is free to decide whether to use one or multiple routing metrics, as well as the way these metrics can be combined. In this paper, we provide ways to quantify the routing metrics so that they can be combined in an additive or lexical manner. We use extensive simulation results to evaluate the impact of several routing metrics on the achieved performance.

Posted Content
TL;DR: A new QoS algorithm for mobile ad hoc network has been proposed that combines the idea of Ant Colony Optimization (ACO) with Optimized Link State Routing (OLSR) protocol to identify multiple stable paths between source and destination nodes.
Abstract: Mobile Ad Hoc Network (MANET) is a dynamic multihop wireless network which is established by a set of mobile nodes on a shared wireless channel. One of the major issues in MANET is routing due to the mobility of the nodes. Routing means the act of moving information across an internet work from a source to a destination. When it comes to MANET, the complexity increases due to various characteristics like dynamic topology, time varying QoS requirements, limited resources and energy etc. QoS routing plays an important role for providing QoS in wireless ad hoc networks. The biggest challenge in this kind of networks is to find a path between the communication end points satisfying user’s QoS requirement. Nature-inspired algorithms (swarm intelligence) such as ant colony optimization (ACO) algorithms have shown to be a good technique for developing routing algorithms for MANETs. In this paper, a new QoS algorithm for mobile ad hoc network has been proposed. The proposed algorithm combines the idea of Ant Colony Optimization (ACO) with Optimized Link State Routing (OLSR) protocol to identify multiple stable paths between source and destination nodes.