scispace - formally typeset
Search or ask a question
Topic

Detached eddy simulation

About: Detached eddy simulation is a research topic. Over the lifetime, 1463 publications have been published within this topic receiving 42666 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, two new two-equation eddy-viscosity turbulence models are presented, which combine different elements of existing models that are considered superior to their alternatives.
Abstract: Two new two-equation eddy-viscosity turbulence models will be presented. They combine different elements of existing models that are considered superior to their alternatives. The first model, referred to as the baseline (BSL) model, utilizes the original k-ω model of Wilcox in the inner region of the boundary layer and switches to the standard k-e model in the outer region and in free shear flows. It has a performance similar to the Wilcox model, but avoids that model's strong freestream sensitivity

15,459 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed the DES97 model, denoted DES97 from here on, which can exhibit an incorrect behavior in thin boundary layers and shallow separation regions, when the grid spacing parallel to the wall becomes less than the boundary-layer thickness.
Abstract: Detached-eddy simulation (DES) is well understood in thin boundary layers, with the turbulence model in its Reynolds-averaged Navier–Stokes (RANS) mode and flattened grid cells, and in regions of massive separation, with the turbulence model in its large-eddy simulation (LES) mode and grid cells close to isotropic. However its initial formulation, denoted DES97 from here on, can exhibit an incorrect behavior in thick boundary layers and shallow separation regions. This behavior begins when the grid spacing parallel to the wall Δ∥ becomes less than the boundary-layer thickness δ, either through grid refinement or boundary-layer thickening. The grid spacing is then fine enough for the DES length scale to follow the LES branch (and therefore lower the eddy viscosity below the RANS level), but resolved Reynolds stresses deriving from velocity fluctuations (“LES content”) have not replaced the modeled Reynolds stresses. LES content may be lacking because the resolution is not fine enough to fully support it, and/or because of delays in its generation by instabilities. The depleted stresses reduce the skin friction, which can lead to premature separation.

2,065 citations

Journal ArticleDOI
TL;DR: In this article, a CFD strategy is proposed that combines delayed detached-eddy simulation (DDES) with an improved RANS-LES hybrid model aimed at wall modelling in LES (WMLES).

1,543 citations

Journal ArticleDOI
TL;DR: This review discusses compelling examples, noting the visual and quantitative success of DES and its principal weakness is its response to ambiguous grids, in which the wall-parallel grid spacing is of the order of the boundary-layer thickness.
Abstract: Detached-eddy simulation (DES) was first proposed in 1997 and first used in 1999, so its full history can be surveyed. A DES community has formed, with adepts and critics, as well as new branches. The initial motivation of high–Reynolds number, massively separated flows remains, for which DES is convincingly more capable presently than either unsteady Reynolds-averaged Navier-Stokes (RANS) or large-eddy simulation (LES). This review discusses compelling examples, noting the visual and quantitative success of DES. Its principal weakness is its response to ambiguous grids, in which the wall-parallel grid spacing is of the order of the boundary-layer thickness. In some situations, DES on a given grid is then less accurate than RANS on the same grid or DES on a coarser grid. Partial remedies have been found, yet dealing with thickening boundary layers and shallow separation bubbles is a central challenge. The nonmonotonic response of DES to grid refinement is disturbing to most observers, as is the absence of...

1,194 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
83% related
Boundary layer
64.9K papers, 1.4M citations
81% related
Laminar flow
56K papers, 1.2M citations
81% related
Turbulence
112.1K papers, 2.7M citations
79% related
Heat transfer
181.7K papers, 2.9M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202383
2022152
202183
202077
201990
201891