scispace - formally typeset
Search or ask a question
Topic

Detection limit

About: Detection limit is a research topic. Over the lifetime, 34379 publications have been published within this topic receiving 644817 citations. The topic is also known as: limit of detection & lower detection limit.


Papers
More filters
Journal ArticleDOI
01 Jan 1999-Analyst
TL;DR: This assay allowed the first real-time monitoring of the germination of bacterial spores by continuously quantifying exuded DPA, representing a substantial improvement over previous rapid tests.
Abstract: Delayed gate fluorescence detection of dipicolinic acid (DPA), a universal and specific component of bacterial spores, has been appraised for use in a rapid analytical method for the detection of low concentrations of bacterial spores. DPA was assayed by fluorimetric detection of its chelates with lanthanide metals. The influence of the choice and concentration of lanthanide and buffer ions on the fluorescence assay was studied as well as the effects of pH and temperature. The optimal system quantified the fluorescence of terbium monodipicolinate in a solution of 10 µM terbium chloride buffered with 1 M sodium acetate, pH 5.6 and had a detection limit of 2 nM DPA. This assay allowed the first real-time monitoring of the germination of bacterial spores by continuously quantifying exuded DPA. A detection limit of 104Bacillus subtilis spores ml–1 was reached, representing a substantial improvement over previous rapid tests.

195 citations

Journal ArticleDOI
TL;DR: In this paper, a new model for measurement error in analytical chemistry was proposed and tested using maximum likelihood estimation and applied to toluene by gas-chromatography/mass-spectrometry and cadmium by atomic absorption spectroscopy.
Abstract: In this article, we propose and test a new model for measurement error in analytical chemistry. Often, the standard deviation of analytical errors is assumed to increase proportionally to the concentration of the analyte, a model that cannot be used for very low concentrations. For near-zero amounts, the standard deviation is often assumed constant, which does not apply to larger quantities. Neither model applies across the full range of concentrations of an analyte. By positing two error components, one additive and one multiplicative, we obtain a model that exhibits sensible behavior at both low and high concentration levels. We use maximum likelihood estimation and apply the technique to toluene by gas-chromatography/mass-spectrometry and cadmium by atomic absorption spectroscopy.

194 citations

Journal ArticleDOI
TL;DR: In this paper, the authors constructed a new chemical ionization time-of-flight mass spectrometer (CI-TOFMS) that measured atmospheric trace gases in real time with high sensitivity.
Abstract: . We constructed a new chemical ionization time-of-flight mass spectrometer (CI-TOFMS) that measures atmospheric trace gases in real time with high sensitivity. We apply the technique to the measurement of formic acid via negative-ion proton transfer, using acetate as the reagent ion. A novel high pressure interface, incorporating two RF-only quadrupoles is used to efficiently focus ions through four stages of differential pumping before analysis with a compact TOFMS. The high ion-duty cycle (>20 %) of the TOFMS combined with the efficient production and transmission of ions in the high pressure interface results in a highly sensitive (>300 ions s−1 pptv−1 formic acid) instrument capable of measuring and saving complete mass spectra at rates faster than 10 Hz. We demonstrate the efficient transfer and detection of both bare ions and ion-molecule clusters, and characterize the instrument during field measurements aboard the R/V Atlantis as part of the CalNex campaign during the spring of 2010. The in-field short-term precision is better than 5 % at 1 pptv (pL/L), for 1-s averages. The detection limit (3 σ, 1-s averages) of the current version of the CI-TOFMS, as applied to the in situ detection of formic acid, is limited by the magnitude and variability in the background determination and was determined to be 4 pptv. Application of the CI-TOFMS to the detection of other inorganic and organic acids, as well as the use of different reagent ion molecules (e.g. I−, CF3O−, CO3−) is promising, as we have demonstrated efficient transmission and detection of both bare ions and their associated ion-molecule clusters.

194 citations

Journal ArticleDOI
TL;DR: In this article, a surface-enhanced Raman scattering (SERS) platform for the selective trace analysis of As(3+) ions was reported based on glutathione (GSH)/4-mercaptopyridine (4-MPY)-modified silver nanoparticles (AgNPs).
Abstract: A highly sensitive surface-enhanced Raman scattering (SERS) platform for the selective trace analysis of As(3+) ions was reported based on glutathione (GSH)/4-mercaptopyridine (4-MPY)-modified silver nanoparticles (AgNPs). Here, GSH conjugated on the surface of AgNPs for specifical binding with As(3+) ions in aqueous solution through As-O linkage and 4-MPY was used as a Raman reporter. When As(3+) ions were added to the system, the binding of As(3+) with GSH resulted in the aggregation of AgNPs, and excellent Raman signal of 4-MPY reporters was obtained which can reflect the concentration of As(3+) indirectly. Under optimal assay conditions, the limit of detection (LOD) was estimated to be as low as 0.76 ppb, which is lower than the WHO defined limit (10 ppb), and an excellent linear range of 4-300 ppb was obtained. The practical application had been carried out for determination of As(3+) in real water samples.

194 citations

Journal ArticleDOI
TL;DR: The high specificity and selectivity of the sensor were demonstrated by evaluating its response to a number of potentially interfering EDCs, and can be potentially applied for on-site real-time inexpensive and easy-to-use monitoring of 17β-estradiol in environmental samples such as effluents or water bodies.
Abstract: Required routine monitoring of endocrine disrupting compounds (EDCs) in water samples, as posed by EPA Unregulated Contaminant Regulation (UCMR3), demands for cost-effective, reliable and sensitive EDC detection methods. This study reports a reusable evanescent wave aptamer-based biosensor for rapid, sensitive and highly selective detection of 17β-estradiol, an EDC that is frequently detected in environmental water samples. In this system, the capture molecular, β-estradiol 6-(O-carboxy-methyl)oxime-BSA, was covalently immobilized onto the optical fiber sensor surface. With an indirect competitive detection mode, samples containing different concentrations of 17β-estradiol were premixed with a given concentration of fluorescence-labeled DNA aptamer, which highly specifically binds to 17β-estradiol. Then, the sample mixture is pumped to the sensor surface, and a higher concentration of 17β-estradiol leads to less fluorescence-labeled DNA aptamer bound to the sensor surface and thus to lower fluorescence signal. The dose-response curve of 17β-estradiol was established and a detection limit was determined as 2.1 nM (0.6 ng mL(-1)). The high specificity and selectivity of the sensor were demonstrated by evaluating its response to a number of potentially interfering EDCs. Potential interference of real environmental sample matrix was assessed by spiked samples in several tertiary wastewater effluents. The sensor can be regenerated with a 0.5% SDS solution (pH 1.9) over tens of times without significant deterioration of the sensor performance. This portable sensor system can be potentially applied for on-site real-time inexpensive and easy-to-use monitoring of 17β-estradiol in environmental samples such as effluents or water bodies.

194 citations


Network Information
Related Topics (5)
Mass spectrometry
72.2K papers, 2M citations
90% related
High-performance liquid chromatography
47.3K papers, 1M citations
90% related
Cyclic voltammetry
55.9K papers, 1.4M citations
84% related
Aqueous solution
189.5K papers, 3.4M citations
84% related
Reagent
60K papers, 1.2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20236,071
202212,796
20211,671
20201,442
20191,445