scispace - formally typeset
Search or ask a question
Topic

Detection limit

About: Detection limit is a research topic. Over the lifetime, 34379 publications have been published within this topic receiving 644817 citations. The topic is also known as: limit of detection & lower detection limit.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system coupled to electrothermal atomic absorption spectrometry (ETAAS) was developed for metal preconcentration in micro-scale, eliminating the laborious and time consuming procedure of phase separation with centrifugation.

132 citations

Journal ArticleDOI
TL;DR: In this paper, an electrochemical sensor based on hierarchically Cu-BTC MOF material for non-electroactive glyphosate detection has been firstly constructed in order to increase the electrode reaction site.
Abstract: An electrochemical sensor based on hierarchically Cu-BTC MOF material for non-electroactive glyphosate detection has been firstly constructed in this report. By using Cu-BTC frameworks as a detection matrix, the large specific surface area of the material can increase the electrode reaction site and further improve the detection performance. The electrochemical behavior of Cu-BTC frameworks for glyphosate detection was evaluated by cyclic voltammetry (CV). Under optimum conditions, differential pulse stripping voltammetry (DPV) is employed to detect glyphosate. The results show that the fabricated sensor displays ultralow detection limit (1.4 × 10−13 mol L-1) and wide detection range (1.0 × 10-12 to 1.0 × 10-9 mol L-1 and 1.0 × 10-9 to 1.0 × 10-5 mol L-1). Besides, this sensor possesses acceptable reproducibility and stability, as well as good selectivity against the major metabolite of glyphosate aminomethylphosphonic acid (AMPA) and other interference. Furthermore, this electrochemical sensor can also be applied to the detection of glyphosate in soybean. It is worth mentioning that this effectively Cu-BTC based sensor has great potential application in favorable and selective detection of organophosphorus pesticides in actual samples.

132 citations

Journal ArticleDOI
06 Feb 2004-Talanta
TL;DR: An amperometric nitrite sensor based on a polymeric nikel tetraaminothphalocyanine film coated glassy carbon (GC) electrode was developed and the proposed method was successfully applied in the detection of nitrite in real samples.

132 citations

Journal ArticleDOI
TL;DR: In this paper, 9-Diazomethylanthracene reacts with carboxyl groups to give an ester derivative which can be used as either a fluorescence or ultraviolet label for fatty acid analysis by high-pressure liquid chromatography.

131 citations

Journal ArticleDOI
01 May 2016-Small
TL;DR: A novel enzyme-induced metallization colorimetric assay is developed to monitor and measure beta-galactosidase (β-gal) activity, and is further employed for colorIMetric bacteriophage (phage)-enabled detection of Escherichia coli (E. coli).
Abstract: A novel enzyme-induced metallization colorimetric assay is developed to monitor and measure beta-galactosidase (β-gal) activity, and is further employed for colorimetric bacteriophage (phage)-enabled detection of Escherichia coli (E. coli). This assay relies on enzymatic reaction-induced silver deposition on the surface of gold nanorods (AuNRs). In the presence of β-gal, the substrate p-aminophenyl β-d-galactopyranoside is hydrolyzed to produce p-aminophenol (PAP). Reduction of silver ions by PAP generates a silver shell on the surface of AuNRs, resulting in the blue shift of the longitudinal localized surface plasmon resonance peak and multicolor changes of the detection solution from light green to orange-red. Under optimized conditions, the detection limit for β-gal is 128 pM, which is lower than the conventional colorimetric assay. Additionally, the assay has a broader dynamic range for β-gal detection. The specificity of this assay for the detection of β-gal is demonstrated against several protein competitors. Additionally, this technique is successfully applied to detect E. coli bacteria cells in combination with bacteriophage infection. Due to the simplicity and short incubation time of this enzyme-induced metallization colorimetric method, the assay is well suited for the detection of bacteria in low-resource settings.

131 citations


Network Information
Related Topics (5)
Mass spectrometry
72.2K papers, 2M citations
90% related
High-performance liquid chromatography
47.3K papers, 1M citations
90% related
Cyclic voltammetry
55.9K papers, 1.4M citations
84% related
Aqueous solution
189.5K papers, 3.4M citations
84% related
Reagent
60K papers, 1.2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20236,071
202212,796
20211,671
20201,442
20191,445