scispace - formally typeset
Topic

Developmental plasticity

About: Developmental plasticity is a(n) research topic. Over the lifetime, 1721 publication(s) have been published within this topic receiving 103438 citation(s).


Papers
More filters
Book

[...]

01 Jan 2003

4,556 citations

Journal ArticleDOI

[...]

TL;DR: Recent evidence for structural forms of synaptic plasticity in the mammalian cortex involves cell type-specific structural plasticity: some boutons and dendritic spines appear and disappear, accompanied by synapse formation and elimination, respectively.
Abstract: Synaptic plasticity in adult neural circuits may involve the strengthening or weakening of existing synapses as well as structural plasticity, including synapse formation and elimination. Indeed, long-term in vivo imaging studies are beginning to reveal the structural dynamics of neocortical neurons in the normal and injured adult brain. Although the overall cell-specific morphology of axons and dendrites, as well as of a subpopulation of small synaptic structures, are remarkably stable, there is increasing evidence that experience-dependent plasticity of specific circuits in the somatosensory and visual cortex involves cell type-specific structural plasticity: some boutons and dendritic spines appear and disappear, accompanied by synapse formation and elimination, respectively. This Review focuses on recent evidence for such structural forms of synaptic plasticity in the mammalian cortex and outlines open questions.

1,535 citations

Journal ArticleDOI

[...]

TL;DR: Greater appreciation of the convergence of mechanisms between stress, depression, and neuroplasticity is likely to lead to the identification of novel targets for more efficacious treatments.
Abstract: Increasing evidence demonstrates that neuroplasticity, a fundamental mechanism of neuronal adaptation, is disrupted in mood disorders and in animal models of stress. Here we provide an overview of the evidence that chronic stress, which can precipitate or exacerbate depression, disrupts neuroplasticity, while antidepressant treatment produces opposing effects and can enhance neuroplasticity. We discuss neuroplasticity at different levels: structural plasticity (such as plastic changes in spine and dendrite morphology as well as adult neurogenesis), functional synaptic plasticity, and the molecular and cellular mechanisms accompanying such changes. Together, these studies elucidate mechanisms that may contribute to the pathophysiology of depression. Greater appreciation of the convergence of mechanisms between stress, depression, and neuroplasticity is likely to lead to the identification of novel targets for more efficacious treatments.

1,459 citations

Journal ArticleDOI

[...]

TL;DR: The challenge the authors face is to learn enough about the mechanisms of plasticity to modulate them to achieve the best behavioral outcome for a given subject.
Abstract: Plasticity is an intrinsic property of the human brain and represents evolution’s invention to enable the nervous system to escape the restrictions of its own genome and thus adapt to environmental pressures, physiologic changes, and experiences. Dynamic shifts in the strength of preexisting connections across distributed neural networks, changes in task-related cortico-cortical and corticosubcortical coherence and modifications of the mapping between behavior and neural activity take place in response to changes in afferent input or efferent demand. Such rapid, ongoing changes may be followed by the establishment of new connections through dendritic growth and arborization. However, they harbor the danger that the evolving pattern of neural activation may in itself lead to abnormal behavior. Plasticity is the mechanism for development and learning, as much as a cause of pathology. The challenge we face is to learn enough about the mechanisms of plasticity to modulate them to achieve the best behavioral outcome for a given subject.

1,446 citations

Journal ArticleDOI

[...]

TL;DR: It is shown that impaired growth in infancy and rapid childhood weight gain exacerbate the effects of impaired prenatal growth, and a new vision of optimal early human development is emerging which takes account of both short and long-term outcomes.
Abstract: Low birthweight is now known to be associated with increased rates of coronary heart disease and the related disorders stroke, hypertension and non-insulin dependent diabetes. These associations have been extensively replicated in studies in different countries and are not the result of confounding variables. They extend across the normal range of birthweight and depend on lower birthweights in relation to the duration of gestation rather than the effects of premature birth. The associations are thought to be consequences of developmental plasticity, the phenomenon by which one genotype can give rise to a range of different physiological or morphological states in response to different environmental conditions during development. Recent observations have shown that impaired growth in infancy and rapid childhood weight gain exacerbate the effects of impaired prenatal growth. A new vision of optimal early human development is emerging which takes account of both short and long-term outcomes.

1,424 citations

Network Information
Related Topics (5)
Hippocampus
34.9K papers, 1.9M citations
83% related
Hippocampal formation
30.6K papers, 1.7M citations
82% related
Glutamate receptor
33.5K papers, 1.8M citations
82% related
Prefrontal cortex
24K papers, 1.9M citations
81% related
Dopaminergic
29K papers, 1.4M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20222
202170
202076
201953
201864
2017114