scispace - formally typeset
Search or ask a question
Topic

Developmental plasticity

About: Developmental plasticity is a research topic. Over the lifetime, 1721 publications have been published within this topic receiving 103438 citations.


Papers
More filters
Book
01 Jan 2003

4,928 citations

Journal ArticleDOI
TL;DR: Recent evidence for structural forms of synaptic plasticity in the mammalian cortex involves cell type-specific structural plasticity: some boutons and dendritic spines appear and disappear, accompanied by synapse formation and elimination, respectively.
Abstract: Synaptic plasticity in adult neural circuits may involve the strengthening or weakening of existing synapses as well as structural plasticity, including synapse formation and elimination. Indeed, long-term in vivo imaging studies are beginning to reveal the structural dynamics of neocortical neurons in the normal and injured adult brain. Although the overall cell-specific morphology of axons and dendrites, as well as of a subpopulation of small synaptic structures, are remarkably stable, there is increasing evidence that experience-dependent plasticity of specific circuits in the somatosensory and visual cortex involves cell type-specific structural plasticity: some boutons and dendritic spines appear and disappear, accompanied by synapse formation and elimination, respectively. This Review focuses on recent evidence for such structural forms of synaptic plasticity in the mammalian cortex and outlines open questions.

1,696 citations

Journal ArticleDOI
TL;DR: Greater appreciation of the convergence of mechanisms between stress, depression, and neuroplasticity is likely to lead to the identification of novel targets for more efficacious treatments.

1,601 citations

Journal ArticleDOI
TL;DR: The challenge the authors face is to learn enough about the mechanisms of plasticity to modulate them to achieve the best behavioral outcome for a given subject.
Abstract: Plasticity is an intrinsic property of the human brain and represents evolution’s invention to enable the nervous system to escape the restrictions of its own genome and thus adapt to environmental pressures, physiologic changes, and experiences. Dynamic shifts in the strength of preexisting connections across distributed neural networks, changes in task-related cortico-cortical and corticosubcortical coherence and modifications of the mapping between behavior and neural activity take place in response to changes in afferent input or efferent demand. Such rapid, ongoing changes may be followed by the establishment of new connections through dendritic growth and arborization. However, they harbor the danger that the evolving pattern of neural activation may in itself lead to abnormal behavior. Plasticity is the mechanism for development and learning, as much as a cause of pathology. The challenge we face is to learn enough about the mechanisms of plasticity to modulate them to achieve the best behavioral outcome for a given subject.

1,556 citations

Journal ArticleDOI
TL;DR: Findings on the environmental modulators of pathogenesis and gene–environment interactions in CNS disorders, and their therapeutic implications, are reviewed.
Abstract: Behavioural, cellular and molecular studies have revealed significant effects of enriched environments on rodents and other species, and provided new insights into mechanisms of experience-dependent plasticity, including adult neurogenesis and synaptic plasticity The demonstration that the onset and progression of Huntington's disease in transgenic mice is delayed by environmental enrichment has emphasized the importance of understanding both genetic and environmental factors in nervous system disorders, including those with Mendelian inheritance patterns A range of rodent models of other brain disorders, including Alzheimer's disease and Parkinson's disease, fragile X and Down syndrome, as well as various forms of brain injury, have now been compared under enriched and standard housing conditions Here, we review these findings on the environmental modulators of pathogenesis and gene-environment interactions in CNS disorders, and discuss their therapeutic implications

1,546 citations


Network Information
Related Topics (5)
Hippocampus
34.9K papers, 1.9M citations
83% related
Hippocampal formation
30.6K papers, 1.7M citations
82% related
Glutamate receptor
33.5K papers, 1.8M citations
82% related
Prefrontal cortex
24K papers, 1.9M citations
81% related
Dopaminergic
29K papers, 1.4M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202316
202244
202172
202076
201953
201864