scispace - formally typeset
Search or ask a question

Showing papers on "Developmental plasticity published in 2016"


Journal ArticleDOI
TL;DR: This Review article summarizes the current understanding of how plants control various types of regeneration and discusses how developmental and environmental constraints influence these regulatory mechanisms.
Abstract: Compared with animals, plants generally possess a high degree of developmental plasticity and display various types of tissue or organ regeneration. This regenerative capacity can be enhanced by exogenously supplied plant hormones in vitro, wherein the balance between auxin and cytokinin determines the developmental fate of regenerating organs. Accumulating evidence suggests that some forms of plant regeneration involve reprogramming of differentiated somatic cells, whereas others are induced through the activation of relatively undifferentiated cells in somatic tissues. We summarize the current understanding of how plants control various types of regeneration and discuss how developmental and environmental constraints influence these regulatory mechanisms.

347 citations


Journal ArticleDOI
TL;DR: Evidence is reviewed and discussed that pinpoints to a possible non-neuronal, glial candidate for such orchestration: the regulation of synaptic plasticity by astrocytes.

206 citations


Journal ArticleDOI
TL;DR: It is argued that developmental conditions not only change mean trait values but also modify the capacity for acclimation, and the evolution of reversible acclimations can no longer be viewed as independent from developmental processes.
Abstract: Phenotypic characteristics of animals can change independently from changes in the genetic code. These plastic phenotypic responses are important for population persistence in changing environments. Plasticity can be induced during early development, with persistent effects on adult phenotypes, and it can occur reversibly throughout life (acclimation). These manifestations of plasticity have been viewed as separate processes. Here we argue that developmental conditions not only change mean trait values but also modify the capacity for acclimation. Acclimation counteracts the potentially negative effects of phenotype–environment mismatches resulting from epigenetic modifications during early development. Developmental plasticity is therefore also beneficial when environmental conditions change within generations. Hence, the evolution of reversible acclimation can no longer be viewed as independent from developmental processes.

195 citations


Journal ArticleDOI
TL;DR: The present review discusses the mechanisms of HI injury to the immature brain and the way they affect plasticity, which crosstalk and can exist as a continuum in the same cell.
Abstract: Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI) of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity.

139 citations


Journal ArticleDOI
TL;DR: It appears that memory loss and neurodegeneration during aging are related to mitochondrial (dys)function, and further studies are indicated to scrutinize the intracellular and molecular processes that regulate the functions of mitochondria in synaptic plasticity.
Abstract: Synaptic plasticity in the adult brain is believed to represent the cellular mechanisms of learning and memory. Mitochondria are involved in the regulation of the complex processes of synaptic plasticity. This paper reviews the current knowledge on the regulatory roles of mitochondria in the function and plasticity of synapses and the implications of mitochondrial dysfunctions in synaptic transmission. First, the importance of mitochondrial distribution and motility for maintenance and strengthening of dendritic spines, but also for new spines/synapses formation is presented. Secondly, the major mitochondrial functions as energy supplier and calcium buffer organelles are considered as possible explanation for their essential and regulatory roles in neuronal plasticity processes. Thirdly, the effects of synaptic potentiation on mitochondrial gene expression are discussed. And finally, the relation between age-related alterations in synaptic plasticity and mitochondrial dysfunctions is considered. It appears that memory loss and neurodegeneration during aging are related to mitochondrial (dys)function. Although, it is clear that mitochondria are essential for synaptic plasticity, further studies are indicated to scrutinize the intracellular and molecular processes that regulate the functions of mitochondria in synaptic plasticity.

137 citations


Journal ArticleDOI
TL;DR: In vitro and in vivo studies demonstrating that several mechanisms underlie homeostatic plasticity of excitatory synapses are reviewed, and identifying participant molecular players are identified.
Abstract: Brain development, sensory information processing, and learning and memory processes depend on Hebbian forms of synaptic plasticity, and on the remodeling and pruning of synaptic connections. Neurons in networks implicated in these processes carry out their functions while facing constant perturbation; homeostatic responses are therefore required to maintain neuronal activity within functional ranges for proper brain function. Here, we will review in vitro and in vivo studies demonstrating that several mechanisms underlie homeostatic plasticity of excitatory synapses, and identifying participant molecular players. Emerging evidence suggests a link between disrupted homeostatic synaptic plasticity and neuropsychiatric and neurologic disorders. Hebbian forms of synaptic plasticity, such as long-term potentiation (LTP), induce long-lasting changes in synaptic strength, which can be destabilizing and drive activity to saturation. Conversely, homeostatic plasticity operates to compensate for prolonged activity changes, stabilizing neuronal firing within a dynamic physiological range. We review mechanisms underlying homeostatic plasticity, and address how neurons integrate distinct forms of plasticity for proper brain function. This article is part of a mini review series: “Synaptic Function and Dysfunction in Brain Diseases”.

112 citations


OtherDOI
TL;DR: Analysis of model organisms provides a picture of how complex, yet elegantly coordinated, developmental programmes build glial and neuronal cells around the third ventricle of the brain, enabling the hypothalamus to mediate its function as a central integrating and response-control mediator for the homeostatic processes that are critical to life.
Abstract: The neuroendocrine hypothalamus is composed of the tuberal and anterodorsal hypothalamus, together with the median eminence/neurohypophysis It centrally governs wide-ranging physiological processes, including homeostasis of energy balance, circadian rhythms and stress responses, as well as growth and reproductive behaviours Homeostasis is maintained by integrating sensory inputs and effecting responses via autonomic, endocrine and behavioural outputs, over diverse time-scales and throughout the lifecourse of an individual Here, we summarize studies that begin to reveal how different territories and cell types within the neuroendocrine hypothalamus are assembled in an integrated manner to enable function, thus supporting the organism's ability to survive and thrive We discuss how signaling pathways and transcription factors dictate the appearance and regionalization of the hypothalamic primordium, the maintenance of progenitor cells, and their specification and differentiation into neurons We comment on recent studies that harness such programmes for the directed differentiation of human ES/iPS cells We summarize how developmental plasticity is maintained even into adulthood and how integration between the hypothalamus and peripheral body is established in the median eminence and neurohypophysis Analysis of model organisms, including mouse, chick and zebrafish, provides a picture of how complex, yet elegantly coordinated, developmental programmes build glial and neuronal cells around the third ventricle of the brain Such conserved processes enable the hypothalamus to mediate its function as a central integrating and response-control mediator for the homeostatic processes that are critical to life Early indications suggest that deregulation of these events may underlie multifaceted pathological conditions and dysfunctional physiology in humans, such as obesity

79 citations


Journal ArticleDOI
TL;DR: It is shown, based on experimental evidence, that structural plasticity can be classified similar to synaptic plasticity into two categories: Hebbian structural Plasticity, which leads to an increase (decrease) of the number of synapses during phases of high (low) neuronal activity and homeostatic structural plasticities, which balances these changes by removing and adding synapses.
Abstract: The connectivity of the brain is continuously adjusted to new environmental influences by several activity-dependent adaptive processes. The most investigated adaptive mechanism is activity-dependent functional or synaptic plasticity regulating the transmission efficacy of existing synapses. Another important but less prominently discussed adaptive process is structural plasticity, which changes the connectivity by the formation and deletion of synapses. In this review, we show, based on experimental evidence, that structural plasticity can be classified similar to synaptic plasticity into two categories: (i) Hebbian structural plasticity, which leads to an increase (decrease) of the number of synapses during phases of high (low) neuronal activity and (ii) homeostatic structural plasticity, which balances these changes by removing and adding synapses. Furthermore, based on experimental and theoretical insights, we argue that each type of structural plasticity fulfills a different function. While Hebbian structural changes enhance memory lifetime, storage capacity, and memory robustness, homeostatic structural plasticity self-organizes the connectivity of the neural network to assure stability. However, the link between functional synaptic and structural plasticity as well as the detailed interactions between Hebbian and homeostatic structural plasticity are more complex. This implies even richer dynamics requiring further experimental and theoretical investigations.

79 citations


Journal ArticleDOI
TL;DR: Results suggest that differences in cooperation between the two groups are a matter of degree rather than constituting a fundamental, qualitative distinction, and individuals must make adaptive choices that balance competition and cooperation—often with the same partners.
Abstract: Studies of the factors affecting reproductive success in group-living monkeys have traditionally focused on competitive traits, like the acquisition of high dominance rank. Recent research, however, indicates that the ability to form cooperative social bonds has an equally strong effect on fitness. Two implications follow. First, strong social bonds make individuals' fitness interdependent and the 'free-rider' problem disappears. Second, individuals must make adaptive choices that balance competition and cooperation-often with the same partners. The proximate mechanisms underlying these behaviours are only just beginning to be understood. Recent results from cognitive and systems neuroscience provide us some evidence that many social and non-social decisions are mediated ultimately by abstract, domain-general neural mechanisms. However, other populations of neurons in the orbitofrontal cortex, striatum, amygdala and parietal cortex specifically encode the type, importance and value of social information. Whether these specialized populations of neurons arise by selection or through developmental plasticity in response to the challenges of social life remains unknown. Many brain areas are homologous and show similar patterns of activity in human and non-human primates. In both groups, cortical activity is modulated by hormones like oxytocin and by the action of certain genes that may affect individual differences in behaviour. Taken together, results suggest that differences in cooperation between the two groups are a matter of degree rather than constituting a fundamental, qualitative distinction.

78 citations


Journal ArticleDOI
TL;DR: This work used a model coral reef fish to investigate the influence of thermal conditions experienced by two generations on reproductive output and the quality of offspring produced by adults and suggested that transgenerational effects differ depending on the absolute thermal change and in which life stage the thermal change is experienced.
Abstract: Predicting the impacts of climate change to biological systems requires an understanding of the ability for species to acclimate to the projected environmental change through phenotypic plasticity. Determining the effects of higher temperatures on individual performance is made more complex by the potential for environmental conditions experienced in previous and current generations to independently affect phenotypic responses to high temperatures. We used a model coral reef fish (Acanthochromis polyacanthus) to investigate the influence of thermal conditions experienced by two generations on reproductive output and the quality of offspring produced by adults. We found that more gradual warming over two generations, +1.5°C in the first generation and then +3.0°C in the second generation, resulted in greater plasticity of reproductive attributes, compared to fish that experienced the same increase in one generation. Reproduction ceased at the projected future summer temperature (31.5°C) when fish experienced +3.0°C for two generations. Additionally, we found that transgenerational plasticity to +1.5°C induced full restoration of thermally affected reproductive and offspring attributes, which was not possible with developmental plasticity alone. Our results suggest that transgenerational effects differ depending on the absolute thermal change and in which life stage the thermal change is experienced.

74 citations


Journal ArticleDOI
TL;DR: Both neurogenesis and gliogenesis have several specific features in humans, which may contribute to the unique plasticity of the human brain.
Abstract: The brain constantly changes to store memories and adapt to new conditions. One type of plasticity that has gained increasing interest during the last years is the generation of new cells. The generation of both new neurons and glial cells contributes to neural plasticity and to some neural repair. There are substantial differences between mammalian species with regard to the extent of and mechanisms behind cell exchange in neural plasticity. Both neurogenesis and gliogenesis have several specific features in humans, which may contribute to the unique plasticity of the human brain.

Journal ArticleDOI
TL;DR: The results indicate that social plasticity relies on multiple neuroplasticity mechanisms across the brain social decision-making network, and that there is not a single neuromolecular module underlying this type of behavioral flexibility.
Abstract: Social living animals need to adjust the expression of their behavior to their status within the group and to changes in social context and this ability (social plasticity) has an impact on their Darwinian fitness. At the proximate level social plasticity must rely on neuroplasticity in the brain social decision-making network (SDMN) that underlies the expression of social behavior, such that the same neural circuit may underlie the expression of different behaviors depending on social context. Here we tested this hypothesis in zebrafish by characterizing the gene expression response in the SDMN to changes in social status of a set of genes involved in different types of neural plasticity: bdnf, involved in changes in synaptic strength; npas4, involved in contextual learning and dependent establishment of GABAergic synapses; neuroligins (nlgn1 and nlgn2) as synaptogenesis markers; and genes involved in adult neurogenesis (wnt3 and neurod). Four social phenotypes were experimentally induced: Winners and Losers of a real-opponent interaction; Mirror-fighters, that fight their own image in a mirror and thus do not experience a change in social status despite the expression of aggressive behavior; and non-interacting fish, which were used as a reference group. Our results show that each social phenotype (i.e. Winners, Losers and Mirror-fighters) present specific patterns of gene expression across the SDMN, and that different neuroplasticity genes are differentially expressed in different nodes of the network (e.g. BDNF in the dorsolateral telencephalon, which is a putative teleost homologue of the mammalian hippocampus). Winners expressed unique patterns of gene co-expression across the SDMN, whereas in Losers and Mirror-fighters the co-expression patterns were similar in the dorsal regions of the telencephalon and in the supracommissural nucleus of the ventral telencephalic area, but differents in the remaining regions of the ventral telencephalon. These results indicate that social plasticity relies on multiple neuroplasticity mechanisms across the SDMN, and that there is not a single neuromolecular module underlying this type of behavioural flexibility.

Journal ArticleDOI
20 Jul 2016-Neuron
TL;DR: It is shown that high dendritic spine turnover is a universal feature of GCs, regardless of their developmental origin and age, and coordinated structural plasticity is consistent with stable, yet flexible, decorrelated sensory representations.

Journal ArticleDOI
04 Mar 2016-eLife
TL;DR: Evaluating the participation of parvalbumin-expressing (PV+) GABAergic neurons in two forms of experience-dependent modification of primary visual cortex in adult mice finds that PV+ inhibitory neurons in V1 play a critical role in the expression of SRP and its behavioral correlate of familiarity recognition, but not in theexpression of OD plasticity.
Abstract: The roles played by cortical inhibitory neurons in experience-dependent plasticity are not well understood. Here we evaluate the participation of parvalbumin-expressing (PV+) GABAergic neurons in two forms of experience-dependent modification of primary visual cortex (V1) in adult mice: ocular dominance (OD) plasticity resulting from monocular deprivation and stimulus-selective response potentiation (SRP) resulting from enriched visual experience. These two forms of plasticity are triggered by different events but lead to a similar increase in visual cortical response. Both also require the NMDA class of glutamate receptor (NMDAR). However, we find that PV+ inhibitory neurons in V1 play a critical role in the expression of SRP and its behavioral correlate of familiarity recognition, but not in the expression of OD plasticity. Furthermore, NMDARs expressed within PV+ cells, reversibly inhibited by the psychotomimetic drug ketamine, play a critical role in SRP, but not in the induction or expression of adult OD plasticity.

Journal ArticleDOI
TL;DR: Understanding of the way in which miRNAs contribute to synaptic plasticity provides rational clues in establishing the novel therapeutic strategy for plasticity-related diseases, as well as their implications in neurological disorders.
Abstract: Although synaptic plasticity in neural circuits is orchestrated by an ocean of genes, molecules, and proteins, the underlying mechanisms remain poorly understood. Recently, it is well acknowledged that miRNA exerts widespread regulation over the translation and degradation of target gene in nervous system. Increasing evidence suggests that quite a few specific miRNAs play important roles in various respects of synaptic plasticity including synaptogenesis, synaptic morphology alteration, and synaptic function modification. More importantly, the miRNA-mediated regulation of synaptic plasticity is not only responsible for synapse development and function but also involved in the pathophysiology of plasticity-related diseases. A review is made here on the function of miRNAs in governing synaptic plasticity, emphasizing the emerging regulatory role of individual miRNAs in synaptic morphological and functional plasticity, as well as their implications in neurological disorders. Understanding of the way in which miRNAs contribute to synaptic plasticity provides rational clues in establishing the novel therapeutic strategy for plasticity-related diseases.

Journal ArticleDOI
TL;DR: In this article, a morphometric analysis of grapevine leaves was carried out between two growing seasons, showing that a more pronounced distal sinus is associated with the colder, drier growing season.
Abstract: The shapes of leaves are dynamic, changing over evolutionary time between species, within a single plant producing different shaped leaves at successive nodes, during the development of a single leaf as it allometrically expands, and in response to the environment. Notably, strong correlations between the dissection and size of leaves with temperature and precipitation exist in both the paleorecord and extant populations. Yet, a morphometric model integrating evolutionary, developmental, and environmental effects on leaf shape is lacking. Here, we continue a morphometric analysis of >5,500 leaves representing 270 grapevines of multiple Vitis species between two growing seasons. Leaves are paired one-to-one and vine-to-vine accounting for developmental context, between growing seasons. Linear discriminant analysis reveals shape features that specifically define growing season, regardless of species or developmental context. The shape feature, a more pronounced distal sinus, is associated with the colder, drier growing season, consistent with patterns observed in the paleorecord. We discuss the implications of such plasticity in a long-lived woody perennial, such as grapevine (Vitis spp.), with respect to the evolution and functionality of plant morphology and changes in climate.

Journal ArticleDOI
TL;DR: The role of different forms of activity during the development of the nervous system in modifying synaptic plasticity necessary for shaping the adult brain is discussed and various factors involved in altering the synaptic Plasticity in positive and negative way are explored.
Abstract: Plasticity or neuronal plasticity is a unique and adaptive feature of nervous system which allows neurons to reorganize their interactions in response to an intrinsic or extrinsic stimulation and shapes the formation and maintenance of a functional neuronal circuit. Synaptic plasticity is the most important form of neural plasticity and plays critical role during the development allowing the formation of precise neural connectivity via the process of pruning. In the sensory systems-auditory and visual, this process is heavily dependent on the external cues perceived during the development. Environmental enrichment paradigms in an activity-dependent manner result in early maturation of the synapses and more efficient trans-synaptic signaling or communication flow. This has been extensively observed in the avian auditory system. On the other hand, stimuli results in negative effect can cause alterations in the synaptic connectivity and strength resulting in various developmental brain disorders including autism, fragile X syndrome and rett syndrome. In this review we discuss the role of different forms of activity (spontaneous or environmental) during the development of the nervous system in modifying synaptic plasticity necessary for shaping the adult brain. Also, we try to explore various factors (molecular, genetic and epigenetic) involved in altering the synaptic plasticity in positive and negative way.

Journal ArticleDOI
TL;DR: In this paper, the authors used visually targeted patch-clamp recordings from basket cell terminals of mice harboring an ataxia-associated mutation and their wild-type littermates, and found no evidence for developmental compensation for inherited Kv1.1 dysfunction.
Abstract: Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca(2+) influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.

Journal ArticleDOI
TL;DR: It is found that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas.
Abstract: Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness-competition across different cortical areas for functional role.

Journal ArticleDOI
TL;DR: It is proposed that learning‐dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life.
Abstract: Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala-dependent learning involves a growing number of plasticity-related signaling pathways also implicated in brain development, suggesting that learning-related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala-dependent learning of a signaling pathway that includes brain-derived neurotrophic factor (BDNF), extracellular signaling-related kinases (ERKs) and cyclic AMP-response element binding protein (CREB). Using these canonical, plasticity-related genes as an example, we discuss the intersection of learning-related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning-dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life.

Journal ArticleDOI
TL;DR: In this article, the authors examined the mechanistic basis and wider implications of adopting a developmental perspective on human ageing, focusing on musculoskeletal and cardiovascular function, and discussed the possible underlying mechanisms, including endothelial function, oxidative stress, stem cells and nutritional factors such as vitamin D status.
Abstract: We examine the mechanistic basis and wider implications of adopting a developmental perspective on human ageing. Previous models of ageing have concentrated on its genetic basis, or the detrimental effects of accumulated damage, but also have raised issues about whether ageing can be viewed as adaptive itself, or is a consequence of other adaptive processes, for example if maintenance and repair processes in the period up to reproduction are traded off against later decline in function. A life course model places ageing in the context of the attainment of peak capacity for a body system, starting in early development when plasticity permits changes in structure and function induced by a range of environmental stimuli, followed by a period of decline, the rate of which depends on the peak attained as well as the later life conditions. Such path dependency in the rate of ageing may offer new insights into its modification. Focusing on musculoskeletal and cardiovascular function, we discuss this model and the possible underlying mechanisms, including endothelial function, oxidative stress, stem cells and nutritional factors such as vitamin D status. Epigenetic changes induced during developmental plasticity, and immune function may provide a common mechanistic process underlying a life course model of ageing. The life course trajectory differs in high and low resource settings. New insights into the developmental components of the life course model of ageing may lead to the design of biomarkers of later chronic disease risk and to new interventions to promote healthy ageing, with important implications for public health.

Journal ArticleDOI
TL;DR: The results suggest that animal personality might be inevitable and emerge in fish under laboratory-controlled conditions even in absence of extrinsic factors that typically lead to behavioral differentiation, in agreement with evidences from the human literature on age-related loss in behavioral plasticity.
Abstract: Animals typically display among-individual differences in behavior that are consistent over time (i.e., personality). These differences are often triggered by variable individual responses to environmental stress factors experienced during life, such as competition for resources and risk of predation. While the causes underlying animal personality are considered to be an issue of prime importance, it is still unknown whether personality emerges and develops over ontogeny if the main sources of behavioral differentiation are absent. Here, we tested whether personality emerged and was strengthened during the lifetime of Eastern mosquitofish (Gambusia holbrooki), once intraspecific competition and risk of predation were completely removed and genetic and maternal differences minimized. We found that individual differences in behavior were overall repeatable over ontogeny (i.e., personality was manifested). Personality was, however, not detectable in juvenile individuals but emerged during and after their sexual maturation. The emergence of personality was triggered by the decline in behavioral plasticity of individuals over ontogeny, while differences in behavior among individuals did not vary with age. Our results suggest that animal personality might be inevitable and emerge in fish under laboratory-controlled conditions even in absence of extrinsic factors that typically lead to behavioral differentiation. The decline of behavioral plasticity over lifetime might be a relevant mechanism for the development of personality in animals. Increasing evidence suggests that animals have personality, that is, individuals consistently differ in behavior among each other (e.g., bold and shy or social and non-social individuals). Personality differences among animals should be, by definition, consistent over time and often caused by environmental challenges experienced early in life. In this study, we observed that personality differences were not present at juvenile age in social fish but emerged later in their life, despite the fact that environmental challenges (i.e., predation risk and competition for space, food, and mates) were absent. Personality differences strengthened over lifetime, resulting from declines in individual behavioral plasticity. Our results suggest that the decline in behavioral plasticity with age may represent a relevant mechanism for behavioral differentiation in animals, in agreement with evidences from the human literature on age-related loss in behavioral plasticity.

Journal ArticleDOI
17 Aug 2016-Neuron
TL;DR: That an all-or-none apparent sex difference in neuronal types is controlled by experience-even in a sensory system devoted to "innate" behaviors-highlights the extraordinary role of "nurture" in neural individuality.

Journal ArticleDOI
TL;DR: This review article addresses how activity-dependent Ca(2+)signaling is crucial for hippocampal synaptic/structural plasticity and discusses how changes in neuronal oxidative state affect Ca( 2+)Signaling and synaptic plasticity.
Abstract: In this review article, we address how activity-dependent Ca(2+)signaling is crucial for hippocampal synaptic/structural plasticity and discuss how changes in neuronal oxidative state affect Ca(2+)signaling and synaptic plasticity. We also analyze current evidence indicating that oxidative stress and abnormal Ca(2+)signaling contribute to age-related synaptic plasticity deterioration.

Journal ArticleDOI
TL;DR: This review informs on those SST-subpopulations hitherto described based on anatomical, molecular, or electrophysiological characteristics and whose functional roles can be attributed based on specific cortical wiring patterns and a possible role for these subpopulations in experience-dependent plasticity is discussed.
Abstract: The mammalian neocortex contains many distinct inhibitory neuronal populations to balance excitatory neurotransmission. A correct excitation/inhibition equilibrium is crucial for normal brain development, functioning, and controlling lifelong cortical plasticity. Knowledge about how the inhibitory network contributes to brain plasticity however remains incomplete. Somatostatin- (SST-) interneurons constitute a large neocortical subpopulation of interneurons, next to parvalbumin- (PV-) and vasoactive intestinal peptide- (VIP-) interneurons. Unlike the extensively studied PV-interneurons, acknowledged as key components in guiding ocular dominance plasticity, the contribution of SST-interneurons is less understood. Nevertheless, SST-interneurons are ideally situated within cortical networks to integrate unimodal or cross-modal sensory information processing and therefore likely to be important mediators of experience-dependent plasticity. The lack of knowledge on SST-interneurons partially relates to the wide variety of distinct subpopulations present in the sensory neocortex. This review informs on those SST-subpopulations hitherto described based on anatomical, molecular, or electrophysiological characteristics and whose functional roles can be attributed based on specific cortical wiring patterns. A possible role for these subpopulations in experience-dependent plasticity will be discussed, emphasizing on learning-induced plasticity and on unimodal and cross-modal plasticity upon sensory loss. This knowledge will ultimately contribute to guide brain plasticity into well-defined directions to restore sensory function and promote lifelong learning.

Journal ArticleDOI
TL;DR: It is shown that the early exposure of rat pups to enriching environmental conditions accelerates the critical period for plasticity in the primary visual cortex, linking this effect to increased histone acetylation, specifically at the BDNF gene level.
Abstract: During an early phase of enhanced sensitivity called the critical period (CP), monocular deprivation causes a shift in the response of visual cortex binocular neurons in favor of the nondeprived eye, a process named ocular dominance (OD) plasticity. While the time course of the CP for OD plasticity can be modulated by genetic/pharmacological interventions targeting GABAergic inhibition, whether an increased sensory-motor experience can affect this major plastic phenomenon is not known. We report that exposure to environmental enrichment (EE) accelerated the closure of the CP for OD plasticity in the rat visual cortex. Histone H3 acetylation was developmentally regulated in primary visual cortex, with enhanced levels being detectable early in enriched pups, and chromatin immunoprecipitation revealed an increase at the level of the BDNF P3 promoter. Administration of the histone deacetylase inhibitor SAHA (suberoylanilide hydroxamic acid) to animals reared in a standard cage mimicked the increase in H3 acetylation observed in the visual cortex and resulted in an accelerated decay of OD plasticity. Finally, exposure to EE in adulthood upregulated H3 acetylation and was paralleled by a reopening of the CP. These findings demonstrate a critical involvement of the epigenetic machinery as a mediator of visual cortex developmental plasticity and of the impact of EE on OD plasticity. SIGNIFICANCE STATEMENT While it is known that an epigenetic remodeling of chromatin structure controls developmental plasticity in the visual cortex, three main questions have remained open. Which is the physiological time course of histone modifications? Is it possible, by manipulating the chromatin epigenetic state, to modulate plasticity levels during the critical period? How can we regulate histone acetylation in the adult brain in a noninvasive manner? We show that the early exposure of rat pups to enriching environmental conditions accelerates the critical period for plasticity in the primary visual cortex, linking this effect to increased histone acetylation, specifically at the BDNF gene level. Moreover, we report that the exposure of adult animals to environmental enrichment enhances histone acetylation and reopens juvenile-like plasticity.

Journal ArticleDOI
TL;DR: A suppressor screen is used to identify factors downstream of eud-1 in mouth-form regulation and suggests NHR-40 is part of a developmental switch, suggesting that switch mechanisms controlling plasticity consist of multi-component hormonal signaling systems.

Journal ArticleDOI
TL;DR: It is found that high-frequency bursts are necessary to trigger LTP and that this burst-dependent plasticity depends on presynaptic NMDA receptors and nitric oxide (NO) signaling and a mechanistic plasticity model based on NO and calcium signaling is developed.

Journal ArticleDOI
20 Oct 2016
TL;DR: This review focuses on recent work showing that synaptic structural rearrangements are a key mechanism mediating neural circuit adaptation and behavioral plasticity in the adult brain.
Abstract: During development, the environment exerts a profound influence on the wiring of brain circuits. Due to the limited resolution of studies in fixed tissue, this experience-dependent structural plasticity was once thought to be restricted to a specific developmental time window. The recent introduction of two-photon microscopy for in vivo imaging has opened the door to repeated monitoring of individual neurons and the study of structural plasticity mechanisms at a very fine scale. In this review, we focus on recent work showing that synaptic structural rearrangements are a key mechanism mediating neural circuit adaptation and behavioral plasticity in the adult brain. We examine this work in the context of classic studies in the visual systems of model organisms, which have laid much of the groundwork for our understanding of activity-dependent synaptic remodeling and its role in brain plasticity.

Journal ArticleDOI
TL;DR: Use of Drosophila melanogaster shows how developmental plasticity of cold tolerance is completely reversible in the adult stage, while adult acclimation in heat tolerance is constrained by developmental temperature.
Abstract: The ability of insects to cope with stressful temperatures through adaptive plasticity has allowed them to thrive under a wide range of thermal conditions. Developmental plasticity is generally considered to be a non-reversible phenotypic change, e.g. in morphological traits, while adult acclimation responses are often considered to be reversible physiological responses. However, physiologically mediated thermal acclimation might not follow this general prediction. We investigated the magnitude and rate of reversibility of developmental thermal plasticity responses in heat and cold tolerance of adult flies, using a full factorial design with two developmental and two adult temperatures (15 and 25°C). We show that cold tolerance attained during development is readily adjusted to the prevailing conditions during adult acclimation, with a symmetric rate of decrease or increase. In contrast, heat tolerance is only partly reversible during acclimation and is thus constrained by the temperature during development. The effect of adult acclimation on heat tolerance was asymmetrical, with a general loss of heat tolerance with age. Surprisingly, the decline in adult heat tolerance at 25°C was decelerated in flies developed at low temperatures. This result was supported by correlated responses in two senescence-associated traits and in accordance with a lower rate of ageing after low temperature development, suggesting that physiological age is not reset at eclosion. The results have profound ecological consequences for populations, as optimal developmental temperatures will be dependent on the thermal conditions faced in the adult stage and the age at which they occur.