scispace - formally typeset
Search or ask a question

Showing papers on "Developmental plasticity published in 2019"


Journal ArticleDOI
01 Jan 2019-Nature
TL;DR: The mouse develops a developmentally and functionally distinct, non-canonical beige fat cell type as an adaptation to cold ambient temperature that recruits a distinct form of thermogenic cell that is required for energy homeostasis and survival.
Abstract: Environmental cues profoundly affect cellular plasticity in multicellular organisms. For instance, exercise promotes a glycolytic-to-oxidative fibre-type switch in skeletal muscle, and cold acclimation induces beige adipocyte biogenesis in adipose tissue. However, the molecular mechanisms by which physiological or pathological cues evoke developmental plasticity remain incompletely understood. Here we report a type of beige adipocyte that has a critical role in chronic cold adaptation in the absence of β-adrenergic receptor signalling. This beige fat is distinct from conventional beige fat with respect to developmental origin and regulation, and displays enhanced glucose oxidation. We therefore refer to it as glycolytic beige fat. Mechanistically, we identify GA-binding protein α as a regulator of glycolytic beige adipocyte differentiation through a myogenic intermediate. Our study reveals a non-canonical adaptive mechanism by which thermal stress induces progenitor cell plasticity and recruits a distinct form of thermogenic cell that is required for energy homeostasis and survival.

147 citations


Journal ArticleDOI
TL;DR: It is suggested that MADS-box genes are key components of gene regulatory networks involved in plant responses to stress and plant developmental plasticity in response to seasonal changes in environmental conditions.
Abstract: Plants, as sessile organisms, adapt to different stressful conditions, such as drought, salinity, extreme temperatures, and nutrient deficiency, via plastic developmental and growth responses. Depending on the intensity and the developmental phase in which it is imposed, a stress condition may lead to a broad range of responses at the morphological, physiological, biochemical, and molecular levels. Transcription factors are key components of regulatory networks that integrate environmental cues and concert responses at the cellular level, including those that imply a stressful condition. Despite the fact that several studies have started to identify various members of the MADS-box gene family as important molecular components involved in different types of stress responses, we still lack an integrated view of their role in these processes. In this review, we analyze the function and regulation of MADS-box gene family members in response to drought, salt, cold, heat, and oxidative stress conditions in different developmental processes of several plants. In addition, we suggest that MADS-box genes are key components of gene regulatory networks involved in plant responses to stress and plant developmental plasticity in response to seasonal changes in environmental conditions.

87 citations


Journal ArticleDOI
TL;DR: This work identifies recent advances and important open questions about the genomics of developmental plasticity in animals and gives special attention to studies using transcriptomics to identify genes whose expression changes across developmental environments and studies using genetic mapping to identify loci that contribute to variation in plasticity and can fuel its evolution.
Abstract: Developmental plasticity refers to the property by which the same genotype produces distinct phenotypes depending on the environmental conditions under which development takes place By allowing organisms to produce phenotypes adjusted to the conditions that adults will experience, developmental plasticity can provide the means to cope with environmental heterogeneity Developmental plasticity can be adaptive and its evolution can be shaped by natural selection It has also been suggested that developmental plasticity can facilitate adaptation and promote diversification Here, we summarize current knowledge on the evolution of plasticity and on the impact of plasticity on adaptive evolution, and we identify recent advances and important open questions about the genomics of developmental plasticity in animals We give special attention to studies using transcriptomics to identify genes whose expression changes across developmental environments and studies using genetic mapping to identify loci that contribute to variation in plasticity and can fuel its evolution

81 citations


Journal ArticleDOI
TL;DR: Empirical and theoretical approaches to plasticity in response to multidimensional environments are reviewed and new opportunities along with some difficulties facing future research are outlined.
Abstract: Phenotypic plasticity is a ubiquitous and necessary adaptation of organisms to variable environments, but most environments have multiple dimensions that vary. Many studies have documented plasticity of a trait with respect to variation in multiple environmental factors. Such multidimensional phenotypic plasticity (MDPP) exists at all levels of organismal organization, from the whole organism to within cells. This complexity in plasticity cannot be explained solely by scaling up ideas from models of unidimensional plasticity. MDPP generates new questions about the mechanism and function of plasticity and its role in speciation and population persistence. Here we review empirical and theoretical approaches to plasticity in response to multidimensional environments and we outline new opportunities along with some difficulties facing future research.

63 citations


Journal ArticleDOI
TL;DR: Both developmental and evolutionary mismatch have important public health consequences and implications for where policy interventions may be most effective, and are discussed with reference primarily to nutrition and in the context of evolutionary medicine.
Abstract: A discrepancy between the phenotype of an individual and that which would confer optimal responses in terms of fitness in an environment is termed 'mismatch'. Phenotype results from developmental plasticity, conditioned partly by evolutionary history of the species and partly by aspects of the developmental environment. We discuss two categories of such mismatch with reference primarily to nutrition and in the context of evolutionary medicine. The categories operate over very different timescales. A developmental mismatch occurs when the phenotype induced during development encounters a different environment post-development. This may be the result of wider environmental changes, such as nutritional transition between generations, or because maternal malnutrition or placental dysfunction give inaccurate information about the organism's likely future environment. An evolutionary mismatch occurs when there is an evolutionarily novel environment. Developmental plasticity may involve immediate adaptive responses (IARs) to preserve survival if an environmental challenge is severe, and/or predictive adaptive responses (PARs) if the challenge does not threaten survival, but there is a fitness advantage in developing a phenotype that will be better adapted later. PARs can have long-term adverse health consequences if there is a developmental mismatch. For contemporary humans, maternal constraint of fetal growth makes PARs likely even if there is no obvious IAR, and this, coupled with the pervasive nutritionally dense modern environment, can explain the widespread observations of developmental mismatch, particularly in populations undergoing nutritional transition. Both developmental and evolutionary mismatch have important public health consequences and implications for where policy interventions may be most effective. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.

61 citations


Journal ArticleDOI
TL;DR: Research on developmental plasticity in reptile thermal ecology should be expanded to include incubation conditions other than mean temperature, consider traits associated with cold-tolerance, and endeavor to understand how developmental Plasticity in thermal ecology traits is beneficial.

42 citations


Journal ArticleDOI
TL;DR: Evidence is presented that EE affects social plasticity, via both direct and indirect mechanisms, as well as under pathological conditions, which could inform therapeutic approaches to the many brain disorders involving social dysfunction, including schizophrenia and autism spectrum disorders.

34 citations


Posted Content
TL;DR: In this article, the authors summarize studies showing that the visual brain of sighted adults retains a type of developmental plasticity called homeostatic plasticity, and this property has been recently exploited successfully for adult amblyopia recover.
Abstract: Between 1 to 5 out of 100 people worldwide has never experienced normotypic vision due to a condition called amblyopia, and about 1 out of 4000 suffer from inherited retinal dystrophies that progressively lead them to blindness. While a wide range of technologies and therapies are being developed to restore vision, a fundamental question still remains unanswered: would the adult visual brain retain a sufficient plastic potential to learn how to see after a prolonged period of abnormal visual experience? In this review we summarize studies showing that the visual brain of sighted adults retains a type of developmental plasticity, called homeostatic plasticity, and this property has been recently exploited successfully for adult amblyopia recover. Next, we discuss how the brain circuits reorganizes when visual stimulation is partially restored by means of a bionic eye in late blinds with Retinitis Pigmentosa. The primary visual cortex in these patients slowly became activated by the artificial visual stimulation, indicating that sight restoration therapies can rely on a considerable degree of spared plasticity in adulthood.

34 citations


Journal ArticleDOI
10 Apr 2019
TL;DR: It is argued that the integration of developmental plasticity for morphological and behavioral traits might improve the effectiveness of seasonal anti‐predatory strategies.
Abstract: Effective anti-predatory strategies typically require matching appearance and behavior in prey, and there are many compelling examples of behavioral repertoires that enhance the effectiveness of morphological defenses. When protective adult morphology is induced by developmental environmental conditions predictive of future predation risk, adult behavior should be adjusted accordingly to maximize predator avoidance. While behavior is typically strongly affected by the adult environment, developmental plasticity in adult behavior-mediated by the same pre-adult environmental cues that affect morphology-could ensure an effective match between anti-predatory morphology and behavior. The coordination of environmentally induced responses may be especially important in populations exposed to predictable environmental fluctuations (e.g., seasonality). Here, we studied early and late life environmental effects on a suite of traits expected to work together for effective crypsis. We focused on wing color and background color preference in Bicyclus anynana, a model of developmental plasticity that relies on crypsis as a seasonal strategy for predator avoidance. Using a full-factorial design, we disentangled effects of developmental and adult ambient temperature on both appearance and behavior. We showed that developmental conditions affect both adult color and color preference, with temperatures that simulate natural dry season conditions leading to browner butterflies with a perching preference for brown backgrounds. This effect was stronger in females, especially when butterflies were tested at lower ambient temperatures. In contrast to the expectation that motionlessness enhances crypsis, we found no support for our hypothesis that the browner dry-season butterflies would be less active. We argue that the integration of developmental plasticity for morphological and behavioral traits might improve the effectiveness of seasonal anti-predatory strategies.

30 citations


Journal ArticleDOI
TL;DR: The utility of adaptive models proposed to explain developmental responses to early‐life adversity, particularly for long‐lived mammals such as humans, are evaluated and how parent‐offspring conflict complicates the authors' understanding of whether mothers or offspring benefit from these responses is highlighted.
Abstract: Adverse ecological and social conditions during early life are known to influence development, with rippling effects that may explain variation in adult health and fitness. The adaptive function of such developmental plasticity, however, remains relatively untested in long-lived animals, resulting in much debate over which evolutionary models are most applicable. Furthermore, despite the promise of clinical interventions that might alleviate the health consequences of early-life adversity, research on the proximate mechanisms governing phenotypic responses to adversity have been largely limited to studies on glucocorticoids. Here, we synthesize the current state of research on developmental plasticity, discussing both ultimate and proximate mechanisms. First, we evaluate the utility of adaptive models proposed to explain developmental responses to early-life adversity, particularly for long-lived mammals such as humans. In doing so, we highlight how parent-offspring conflict complicates our understanding of whether mothers or offspring benefit from these responses. Second, we discuss the role of glucocorticoids and a second physiological system-the gut microbiome-that has emerged as an additional, clinically relevant mechanism by which early-life adversity can influence development. Finally, we suggest ways in which nonhuman primates can serve as models to study the effects of early-life adversity, both from evolutionary and clinical perspectives.

28 citations


Journal ArticleDOI
TL;DR: This review asks the essential question of what role early stages play in the ability of fish to later cope with the effects of global change, considering three key environmental factors (temperature, hypoxia and acidification).

Journal ArticleDOI
TL;DR: Proof of concepts for the existing hypothesis that alternative oxidase (AOX) can be relevant for developmental plasticity and be associated to yield stability are provided and ready-to-use concepts for plant selection and optimizing in vivo and in vitro propagation are highlighted.
Abstract: Somatic embryogenesis (SE) is the most striking and prominent example of plant plasticity upon severe stress. Inducing immature carrot seeds perform SE as substitute to germination by auxin treatment can be seen as switch between stress levels associated to morphophysiological plasticity. This experimental system is highly powerful to explore stress response factors that mediate the metabolic switch between cell and tissue identities. Developmental plasticity per se is an emerging trait for in vitro systems and crop improvement. It is supposed to underlie multi-stress tolerance. High plasticity can protect plants throughout life cycles against variable abiotic and biotic conditions. We provide proof of concepts for the existing hypothesis that alternative oxidase (AOX) can be relevant for developmental plasticity and be associated to yield stability. Our perspective on AOX as relevant coordinator of cell reprogramming is supported by real-time polymerase chain reaction (PCR) analyses and gross metabolism data from calorespirometry complemented by SHAM-inhibitor studies on primed, elevated partial pressure of oxygen (EPPO)-stressed, and endophyte-treated seeds. In silico studies on public experimental data from diverse species strengthen generality of our insights. Finally, we highlight ready-to-use concepts for plant selection and optimizing in vivo and in vitro propagation that do not require further details on molecular physiology and metabolism. This is demonstrated by applying our research & technology concepts to pea genotypes with differential yield performance in multilocation fields and chickpea types known for differential robustness in the field. By using these concepts and tools appropriately, also other marker candidates than AOX and complex genomics data can be efficiently validated for prebreeding and seed vigor prediction.

Journal ArticleDOI
TL;DR: It is shown that individuals become more stable, i.e. express less reversible plasticity, in risky exploratory behaviour when raised under high temperatures, suggesting a key role for temperature in affecting the ecological processes associated with risky behaviours in ectothermic species.
Abstract: Developmental plasticity “prepares” individuals to environments experienced during adulthood. Labile traits, such as behaviour, vary within and among individuals owing to (i) reversible plasticity and (ii) developmental plasticity and genetic make-up, respectively. Here, we test whether developmental environments affect the expression of both within- and among-individual variation in behaviour. In ectothermic species, low temperatures are associated with a reduced expression of behaviour and can also limit the expression of reversible plasticity and among-individual differentiation, for example, by restricting the expression of additive genetic variation. We focused on exploratory behaviour since activity-related behaviours are assumed to be temperature-dependent in ectotherms. Specifically, low temperatures can restrict the physiological machinery needed for movement. To test our predictions, we raised field crickets, Gryllus bimaculatus, at low versus high temperatures throughout ontogeny and compared behavioural means and variance components (i.e. among- and within-individual variances) across treatments. We also compared the coefficients of variation for each variance component across treatments to assess whether environmental effects on variance were independent of the effects on mean behaviour. As predicted, individuals raised at high temperatures were more explorative and exhibited more among- and within-individual variance compared to individuals raised at low temperatures. Interestingly, individuals raised under high temperatures became more stable in their behaviour when controlling for treatment effects on average behaviour. Our results show experimentally that different developmental temperatures trigger different amounts of behavioural “stability” in exploratory behaviour, thereby suggesting a key role for temperature in affecting the ecological processes associated with exploratory behaviour in ectothermic species. Individuals differ relative to one another in their mean behavioural expression (i.e. “animal personality”), while, at the same time, individuals change their behaviour from one instance to the next (i.e. reversible plasticity). Expression of both above-mentioned components should strongly depend on environments experienced throughout ontogeny. Temperature represents a key environmental factor in most ectothermic animals as it directly affects the ability to express behaviour. Here, we experimentally test whether temperature experienced throughout ontogeny has permanent effects on the expression of individual differences and reversible plasticity in behaviour later in life. We show that individuals become more stable, i.e. express less reversible plasticity, in risky exploratory behaviour when raised under high temperatures. Our results thus suggest a key role for temperature in affecting the ecological processes associated with risky behaviours in ectothermic species.

Journal ArticleDOI
TL;DR: Overall, it is shown that C. elegans exhibit adaptive developmental plasticity that affects multiple aspects of foraging behavior and leads to changes in a core navigation circuit and that innate foraging traits and plasticity in those traits are genetically separable.

Journal ArticleDOI
TL;DR: The results show that flies from both populations raised at an intermediate developmental temperature have comparable or higher early fecundity and fertility at all tested adulthood temperatures, while lower (17°C) or higher developmental temperatures did not entail any advantage under the tested thermal regimes.
Abstract: Whether the character of developmental plasticity is adaptive or non-adaptive has often been a matter of controversy. Although thermal developmental plasticity has been studied in Drosophila for several traits, it is not entirely clear how it affects reproductive fitness. We, therefore, investigated how developmental temperature affects reproductive performance (early fecundity and egg-to-adult viability) of wild-caught Drosophila melanogaster. We tested competing hypotheses on the character of developmental thermal plasticity using a full-factorial design with three developmental and adulthood temperatures within the natural thermal range of this species. To account for potential intraspecific differences, we examined flies from tropical (India) and temperate (Slovakia) climate zones. Our results show that flies from both populations raised at an intermediate developmental temperature (25°C) have comparable or higher early fecundity and fertility at all tested adulthood temperatures, while lower (17°C) or higher developmental temperatures (29°C) did not entail any advantage under the tested thermal regimes. Importantly, the superior thermal performance of flies raised at 25°C is apparent even after taking two traits positively associated with reproductive output into account: body size and ovariole number. Thus, in D. melanogaster, development at a given temperature does not necessarily provide any advantage in this thermal environment in terms of reproductive fitness. Our findings strongly support the optimal developmental temperature hypothesis, which states that in different thermal environments, the highest fitness is achieved when an organism is raised at its optimal developmental temperature.

Journal ArticleDOI
TL;DR: The population-specific responses to temperature indicate genetic differentiation in developmental plasticity between populations, and may reflect an adaptation to low temperature during early fry development in Harfjärden, where the stream leading up to the wetland dries out relatively early in the spring, forcing individuals to spawn early.
Abstract: In the wake of climate change many environments will be exposed to increased and more variable temperatures. Knowledge about how species and populations respond to altered temperature regimes is therefore important to improve projections of how ecosystems will be affected by global warming, and to aid management. We conducted a common garden, split-brood temperature gradient (4.5 °C, 9.7 °C and 12.3 °C) experiment to study the effects of temperature in two populations (10 families from each population) of anadromous pike (Esox lucius) that normally experience different temperatures during spawning. Four offspring performance measures (hatching success, day degrees until hatching, fry survival, and fry body length) were compared between populations and among families. Temperature affected all performance measures in a population-specific manner. Low temperature had a positive effect on the Harfjarden population and a negative effect on the Lervik population. Further, the effects of temperature differed among families within populations. The population-specific responses to temperature indicate genetic differentiation in developmental plasticity between populations, and may reflect an adaptation to low temperature during early fry development in Harfjarden, where the stream leading up to the wetland dries out relatively early in the spring, forcing individuals to spawn early. The family-specific responses to temperature treatment indicate presence of genetic variation for developmental plasticity (G x E) within both populations. Protecting between- and within-population genetic variation for developmental plasticity and high temperature-related adaptive potential of early life history traits will be key to long-term viability and persistence in the face of continued climate change.

Journal ArticleDOI
01 Nov 2019-Genetics
TL;DR: The events that progressively restrict cellular differentiation during embryogenesis are described, starting with the multipotency-to-commitment transition (MCT) and subsequently through postembryonic development of the animal, and the range of molecular processes, including transcriptional and translational control systems, that contribute to cellular plasticity are considered.
Abstract: While Caenorhabditis elegans was originally regarded as a model for investigating determinate developmental programs, landmark studies have subsequently shown that the largely invariant pattern of development in the animal does not reflect irreversibility in rigidly fixed cell fates. Rather, cells at all stages of development, in both the soma and germline, have been shown to be capable of changing their fates through mutation or forced expression of fate-determining factors, as well as during the normal course of development. In this chapter, we review the basis for natural and induced cellular plasticity in C. elegans. We describe the events that progressively restrict cellular differentiation during embryogenesis, starting with the multipotency-to-commitment transition (MCT) and subsequently through postembryonic development of the animal, and consider the range of molecular processes, including transcriptional and translational control systems, that contribute to cellular plasticity. These findings in the worm are discussed in the context of both classical and recent studies of cellular plasticity in vertebrate systems.

Journal ArticleDOI
TL;DR: Evidence is described supporting the idea that infant conspecifics are capable of activating distinct neural pathways to elicit avoidant, aggressive and parental responses from adult rodents and the hypothesis that alterations in transcriptional regulation within the medial preoptic area of the hypothalamus may be a key mechanism of neural plasticity involved in programming the differential sensitivity of these neural pathways is discussed.

Journal ArticleDOI
TL;DR: It is found that artificially induced plasticity in ocular dominance extended beyond the duration of the naturally occurring critical period and continued as long as fluoxetine was administered, however, this fluoxettine‐induced plasticity period ended as soon as the drug was not given.
Abstract: Heightened neuronal plasticity expressed during early postnatal life has been thought to permanently decline once critical periods have ended. For example, monocular deprivation is able to shift ocular dominance in the mouse visual cortex during the first months of life, but this effect is lost later in life. However, various treatments, such as the antidepressant fluoxetine, can reactivate a critical period-like plasticity in the adult brain. When monocular deprivation is supplemented with chronic fluoxetine administration, a major shift in ocular dominance is produced after the critical period has ended. In the current study, we characterized the temporal patterns of fluoxetine-induced plasticity in the adult mouse visual cortex, using in vivo optical imaging. We found that artificially induced plasticity in ocular dominance extended beyond the duration of the naturally occurring critical period and continued as long as fluoxetine was administered. However, this fluoxetine-induced plasticity period ended as soon as the drug was not given. These features of antidepressant-induced plasticity may be useful when designing treatment strategies involving long-term antidepressant treatment in humans.

Journal ArticleDOI
TL;DR: This review explores how the growing mechanistic understanding of plasticity and robustness is beginning to force a revision of the authors' perception of both phenomena, away from their conventional view of plasticities as opposites along a continuum and toward a framework that emphasizes their reciprocal, constructive, and integrative nature.
Abstract: Exposure to environmental variation is a characteristic feature of normal development, one that organisms can respond to during their lifetimes by actively adjusting or maintaining their phenotype in order to maximize fitness. Plasticity and robustness have historically been studied by evolutionary biologists through quantitative genetic and reaction norm approaches, while more recent efforts emerging from evolutionary developmental biology have begun to characterize the molecular and developmental genetic underpinnings of both plastic and robust trait formation. In this review, we explore how our growing mechanistic understanding of plasticity and robustness is beginning to force a revision of our perception of both phenomena, away from our conventional view of plasticity and robustness as opposites along a continuum and toward a framework that emphasizes their reciprocal, constructive, and integrative nature. We do so in three sections. Following an introduction, the first section looks inward and reviews the genetic, epigenetic, and developmental mechanisms that enable organisms to sense and respond to environmental conditions, maintaining and adjusting trait formation in the process. In the second section, we change perspective and look outward, exploring the ways in which organisms reciprocally shape their environments in ways that influence trait formation, and do so through the lens of behavioral plasticity, niche construction, and host-microbiota interactions. In the final section, we revisit established plasticity and robustness concepts in light of these findings, and highlight research opportunities to further advance our understanding of the causes, mechanisms, and consequences of these ubiquitous, and interrelated, phenomena.

Journal ArticleDOI
TL;DR: An experimental and statistical framework is developed to reveal shifts in correlative patterns of investment into different life-history traits that was developmentally plastic in response to variation in temperature and food availability.
Abstract: Complex environments, characterized by co-varying factors (e.g. temperature and food availability) may cause animals to invest resources differentially into fitness-related traits. Thus, experiments manipulating multiple environmental factors concurrently provide valuable insight into the role of the environment in shaping not only important traits (e.g. dispersal capacity or reproduction), but also trait–trait interactions (e.g. trade-offs between traits). We used a multi-factorial design to manipulate variation in temperature (constant 28 °C vs. 28 ± 5 °C daily cycle) and food availability (unlimited vs. intermittent access) throughout development in the sand field cricket (Gryllus firmus). Using a univariate approach, we found that temperature variability and unlimited food availability promoted survival, development, growth, body size and/or reproductive investment. Using principal components as indices of resource allocation strategy, we found that temperature variability and unlimited food reduced investment into flight capacity in females. Thus, we detected a sex-specific trade-off between flight and other life-history traits that was developmentally plastic in response to variation in temperature and food availability. We develop an experimental and statistical framework to reveal shifts in correlative patterns of investment into different life-history traits. This approach can be applied to a range of biological systems to investigate how environmental complexity influences traits and trait trade-offs.

Journal ArticleDOI
TL;DR: The results indicate that early life‐stage variation in gene expression, concomitant to maternal effects, can influence developmental plasticity and potentially the evolution of resource polymorphism in fishes.
Abstract: Gene expression during development shapes the phenotypes of individuals. Although embryonic gene expression can have lasting effects on developmental trajectories, few studies consider the role of maternal effects, such as egg size, on gene expression. Using qPCR, we characterize relative expression of 14 growth and/or skeletal promoting genes across embryonic development in Arctic charr (Salvelinus alpinus). We test to what extent their relative expression is correlated with egg size and size at early life-stages within the study population. We predict smaller individuals to have higher expression of growth and skeletal promoting genes, due to less maternal resources (i.e., yolk) and prioritization of energy toward ossification. We found expression levels to vary across developmental stages and only three genes (Mmp9, Star, and Sgk1) correlated with individual size at a given developmental stage. Contrary to our hypothesis, expression of Mmp9 and Star showed a non-linear relationship with size (at post fertilization and hatching, respectively), whilst Sgk1 was higher in larger embryos at hatching. Interestingly, these genes are also associated with craniofacial divergence of Arctic charr morphs. Our results indicate that early life-stage variation in gene expression, concomitant to maternal effects, can influence developmental plasticity and potentially the evolution of resource polymorphism in fishes.

Journal ArticleDOI
TL;DR: The results show clearly that thermal performance of the ubiquitous copepod, Acartia tonsa is affected by complex interactions of the three tested variables, and low-latitude populations may be more vulnerable to warming as they lack the ability to respond to increases in temperature through phenotypic plasticity.
Abstract: Predicting the response of populations to climate change requires an understanding of how various factors affect thermal performance. Genetic differentiation is well known to affect thermal performance, but the effects of sex and developmental phenotypic plasticity often go uncharacterized. We used common garden experiments to test for effects of local adaptation, developmental phenotypic plasticity and individual sex on thermal performance of the ubiquitous copepod, Acartia tonsa (Calanoida, Crustacea) from two populations strongly differing in thermal regimes (Florida and Connecticut, USA). Females had higher thermal tolerance than males in both populations, while the Florida population had higher thermal tolerance compared with the Connecticut population. An effect of developmental phenotypic plasticity on thermal tolerance was observed only in the Connecticut population. Our results show clearly that thermal performance is affected by complex interactions of the three tested variables. Ignoring sex-specific differences in thermal performance may result in a severe underestimation of population-level impacts of warming because of population decline due to sperm limitation. Furthermore, despite having a higher thermal tolerance, low-latitude populations may be more vulnerable to warming as they lack the ability to respond to increases in temperature through phenotypic plasticity.

Journal ArticleDOI
TL;DR: This study links polyphenism regulatory loci to the transcription producing alternative forms of a morphological novelty in the nematode Pristionchus pacificus, establishing a platform for determining how specific regulators of morph-biased genes may influence selection on plastic phenotypes.
Abstract: The ability to translate a single genome into multiple phenotypes, or developmental plasticity, defines how phenotype derives from more than just genes. However, to study the evolutionary targets of plasticity and their evolutionary fates, we need to understand how genetic regulators of plasticity control downstream gene expression. Here, we have identified a transcriptional response specific to polyphenism (i.e., discrete plasticity) in the nematode Pristionchus pacificus. This species produces alternative resource-use morphs - microbivorous and predatory forms, differing in the form of their teeth, a morphological novelty - as influenced by resource availability. Transcriptional profiles common to multiple polyphenism-controlling genes in P. pacificus reveal a suite of environmentally sensitive loci, or ultimate target genes, that make up an induced developmental response. Additionally, in vitro assays show that one polyphenism regulator, the nuclear receptor (NR) NHR-40, physically binds to promoters with putative HNF4⍺ (the NR class including NHR-40) binding sites, suggesting this receptor may directly regulate genes that describe alternative morphs. Among differentially expressed genes were morph-limited genes, highlighting factors with putative "on-off" function in plasticity regulation. Further, predatory morph-biased genes included candidates - namely, all four P. pacificus homologs of Hsp70, which have HNF4⍺ motifs - whose natural variation in expression matches phenotypic differences among P. pacificus wild isolates. In summary, our study links polyphenism regulatory loci to the transcription producing alternative forms of a morphological novelty. Consequently, our findings establish a platform for determining how specific regulators of morph-biased genes may influence selection on plastic phenotypes.

Journal ArticleDOI
TL;DR: It is argued that identification of the mechanisms and consequences of reproductive failure in animals facing heat stress will help understand how wild and domesticated populations will respond to global climate change and elucidate long‐standing evolutionary questions around the maintenance of genetic variation in traits highly relevant to fitness.
Abstract: In both plants and animals, male gametogenesis is particularly sensitive to heat stress, to the extent that a single hot or cold day can compromise crop productivity or population persistence. In animals, heat stress during development can impact a male’s ability to secure copulations and/or his post-copulatory fertility. Despite such observations, relatively few studies have examined the consequences of developmental temperature on the reproductive behaviour and physiology of males and females. Here we report for the first time the effects of developmental temperature on the phenotypic expression of both apyrene and eupyrene sperm and the copulatory behaviour of the Indian meal moth, Plodia interpunctella. We show that the length of both apyrene and eupyrene sperm decrease with increasing developmental temperature and that males are less likely to engage in copulation when reared at the highest and lowest temperatures. Where copulation occurred, the duration of copula decreased as male developmental temperature increased. We argue that identification of the mechanisms and consequences of reproductive failure in animals facing heat stress will help understand how wild and domesticated populations will respond to global climate change. We also contend that such studies will help elucidate long-standing evolutionary questions around the maintenance of genetic variation in traits highly relevant to fitness and the role of phenotypic plasticity in driving the evolution of novel traits.

Journal ArticleDOI
TL;DR: Developmental hypoxia has long-lasting effects on turtle cardiomyocyte function, which might prime their physiology for exploiting hypoxic environments, and maintenance of low ROS levels during anoxia might limit oxidative damage and a greater sensitivity to Ca2+ could provide a mechanism to maintain contractile force.
Abstract: For some species of ectothermic vertebrates, early exposure to hypoxia during embryonic development improves hypoxia-tolerance later in life. However, the cellular mechanisms underlying this phenomenon are largely unknown. Given that hypoxic survival is critically dependent on the maintenance of cardiac function, we tested the hypothesis that developmental hypoxia alters cardiomyocyte physiology in a manner that protects the heart from hypoxic stress. To test this hypothesis, we studied the common snapping turtle, which routinely experiences chronic developmental hypoxia and exploits hypoxic environments in adulthood. We isolated cardiomyocytes from juvenile turtles that embryonically developed in either normoxia (21% O2) or hypoxia (10% O2), and subjected them to simulated anoxia and reoxygenation, while simultaneously measuring intracellular Ca2+, pH and reactive oxygen species (ROS) production. Our results suggest developmental hypoxia improves cardiomyocyte anoxia-tolerance of juvenile turtles, which is supported by enhanced myofilament Ca2+-sensitivity and a superior ability to suppress ROS production. Maintenance of low ROS levels during anoxia might limit oxidative damage and a greater sensitivity to Ca2+ could provide a mechanism to maintain contractile force. Our study suggests developmental hypoxia has long-lasting effects on turtle cardiomyocyte function, which might prime their physiology for exploiting hypoxic environments.

Journal ArticleDOI
TL;DR: This first demonstration of different plasticity forms in benthic intertidal animals supports the hypothesis that habitat heterogeneity (irrespective of latitude) drives thermal plasticity selection and suggests that studies not making reference to different spatial scales of thermal heterogeneity, nor seeking how these may drive different thermal Plasticity forms, risk misinterpreting ectothermic responses to environmental warming.
Abstract: The theory for thermal plasticity of tropical ectotherms has centered on terrestrial and open-water marine animals which experience reduced variation in diurnal and seasonal temperatures, conditions constraining plasticity selection. Tropical marine intertidal animals, however, experience complex habitat thermal heterogeneity, providing circumstances likely to encourage thermal plasticity selection. Using the tropical rocky-intertidal gastropod, Echinolittorina malaccana, we investigated heat tolerance plasticity in terms of laboratory acclimation and natural acclimatization of populations from thermally-dissimilar nearby shorelines. Laboratory treatments yielded similar capacities of snails from either population to acclimate their lethal thermal limit (LT50s were ~2 °C). However, the populations differed in the temperature range over which acclimatory adjustments could be made; LT50 plasticity occurred over a higher temperature range in the warm-shore snails compared to the cool-shore snails, giving an overall acclimation capacity for the populations combined of 2.9 °C. In addition to confirming significant heat tolerance plasticity in tropical intertidal animals, these findings reveal two plasticity forms, reversible (laboratory acclimation) and non-reversible (population or shoreline specific) plasticity. The plasticity forms should account for different spatiotemporal scales of the environmental temperature variation; reversible plasticity for daily and tidal variations in microhabitat temperature and non-reversible plasticity for lifelong, shoreline temperature conditions. Non-reversible heat tolerance plasticity, likely established after larvae settle on the shore, should be energetically beneficial in preventing heat shock protein overexpression, but also should facilitate widespread colonization of coasts that support thermally-diverse shorelines. This first demonstration of different plasticity forms in benthic intertidal animals supports the hypothesis that habitat heterogeneity (irrespective of latitude) drives thermal plasticity selection. It further suggests that studies not making reference to different spatial scales of thermal heterogeneity, nor seeking how these may drive different thermal plasticity forms, risk misinterpreting ectothermic responses to environmental warming.

Journal ArticleDOI
TL;DR: The resulting individual differences were maintained over at least one-third of the adult lifespan and thus appear to represent stable, canalized developmental effects and not temporal state differences, providing proximate insight into how a broader range of developmental experiences shape trait variation.
Abstract: Developmental plasticity is known to influence the mean behavioral phenotype of a population. Yet, studies on how developmental plasticity shapes patterns of variation within populations are comparatively rare and often focus on a subset of developmental cues (e.g., nutrition). One potentially important but understudied developmental experience is social experience, as it is explicitly hypothesized to increase variation among individuals as a way to promote "social niches." To test this, we exposed juvenile black widow spiders (Latrodectus hesperus) to the silk of conspecifics by transplanting them onto conspecific webs for 48 h once a week until adulthood. We also utilized an untouched control group as well as a disturbed group. This latter group was removed from their web at the same time points as the social treatment, but was immediately placed back on their own web. After repeatedly measuring adult behavior and web structure, we found that social rearing drove higher or significant levels of repeatability relative to the other treatments. Repeatability in the social treatment also decreased in some traits, paralleling the decreases observed in the disturbed treatments. Thus, repeated juvenile disturbance may decrease among-individual differences in adult spiders. Yet, social rearing appeared to override the effect of disturbance in some traits, suggesting a prioritization effect. The resulting individual differences were maintained over at least one-third of the adult lifespan and thus appear to represent stable, canalized developmental effects and not temporal state differences. These results provide proximate insight into how a broader range of developmental experiences shape trait variation.

Journal ArticleDOI
TL;DR: The potential role that plasticity plays in the evolutionary diversification of scaling relationships is addressed and the potential role of allometric plasticity and cryptic genetic variation in allometry in facilitating divergence via genetic accommodation is addressed.
Abstract: Scaling relationships emerge from differential growth of body parts relative to each other. As such, scaling relationships are at least in part the product of developmental plasticity. While some of the developmental genetic mechanisms underlying scaling relationships are starting to be elucidated, how these mechanisms evolve and give rise to the enormous diversity of allometric scaling observed in nature is less understood. Furthermore, developmental plasticity has itself been proposed as a mechanism that facilitates adaptation and diversification, yet its role in the developmental evolution of scaling relationships remains largely unknown. In this review, we first explore how the mechanisms of scaling relationships have evolved. We primarily focus on insect development and review how pathway components and pathway interactions have evolved across taxa to regulate scaling relationships across diverse traits. We then discuss the potential role of developmental plasticity in the evolution of scaling relationships. Specifically, we address the potential role of allometric plasticity and cryptic genetic variation in allometry in facilitating divergence via genetic accommodation. Collectively, in this article, we aim to bring together two aspects of developmental plasticity: the mechanistic underpinnings of scaling relationships and their evolution, and the potential role that plasticity plays in the evolutionary diversification of scaling relationships.

Journal ArticleDOI
TL;DR: It is found that the timing of H3K9me2 and nuclear MET-2 is sensitive to rapid cell cycles, but not to zygotic genome activation or cell counting, and the cell cycle is identified as a crucial parameter ofMET-2 regulation.
Abstract: During the first hours of embryogenesis, formation of higher-order heterochromatin coincides with the loss of developmental potential. Here we examine the relationship between these two events, and we probe the processes that contribute to the timing of their onset. Mutations that disrupt histone H3 lysine 9 (H3K9) methyltransferases reveal that the methyltransferase MET-2 helps terminate developmental plasticity, through mono- and di- methylation of H3K9 (me1/me2), and promotes heterochromatin formation, through H3K9me3. While loss of H3K9me3 perturbs formation of higher-order heterochromatin, embryos are still able to terminate plasticity, indicating that the two processes can be uncoupled. Methylated H3K9 appears gradually in developing embryos and depends on nuclear localization of MET-2. We find that the timing of H3K9me2 and nuclear MET-2 is sensitive to rapid cell cycles, but not to zygotic genome activation or cell counting. These data reveal distinct roles for different H3K9 methylation states in the generation of heterochromatin and loss of developmental plasticity by MET-2 and identify the cell cycle as a critical parameter of MET-2 regulation.