scispace - formally typeset
Search or ask a question

Showing papers on "Developmental plasticity published in 2022"


Journal ArticleDOI
TL;DR: A review of the role of microglia in synaptic plasticity and learning and memory can be found in this article, with a focus mainly on recently published literature, where the authors discuss the possibility of micro-glia manipulation as a therapeutic to ameliorate cognitive deficits associated with aging, Alzheimer's disease, traumatic brain injury, HIV-associated neurocognitive disorder, and mental disorders.

96 citations


Journal ArticleDOI
TL;DR: In this paper , the role developmental plasticity plays in allowing populations to cope with thermal extremes is poorly understood, and it is suggested that developmental changes in thermal tolerance rarely reach levels of perfect compensation and may provide limited benefit in changing environments.
Abstract: Abstract Understanding the factors affecting thermal tolerance is crucial for predicting the impact climate change will have on ectotherms. However, the role developmental plasticity plays in allowing populations to cope with thermal extremes is poorly understood. Here, we meta‐analyse how thermal tolerance is initially and persistently impacted by early (embryonic and juvenile) thermal environments by using data from 150 experimental studies on 138 ectothermic species. Thermal tolerance only increased by 0.13°C per 1°C change in developmental temperature and substantial variation in plasticity (~36%) was the result of shared evolutionary history and species ecology. Aquatic ectotherms were more than three times as plastic as terrestrial ectotherms. Notably, embryos expressed weaker but more heterogenous plasticity than older life stages, with numerous responses appearing as non‐adaptive. While developmental temperatures did not have persistent effects on thermal tolerance overall, persistent effects were vastly under‐studied, and their direction and magnitude varied with ontogeny. Embryonic stages may represent a critical window of vulnerability to changing environments and we urge researchers to consider early life stages when assessing the climate vulnerability of ectotherms. Overall, our synthesis suggests that developmental changes in thermal tolerance rarely reach levels of perfect compensation and may provide limited benefit in changing environments.

16 citations


Journal ArticleDOI
TL;DR: According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, environmental changes taking place during early maturational periods may alter normal development and predispose to the occurrence of diverse pathologies later in life as mentioned in this paper .
Abstract: According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, environmental changes taking place during early maturational periods may alter normal development and predispose to the occurrence of diverse pathologies later in life. Indeed, adverse conditions during these critical developmental windows of high plasticity have been reported to alter the offspring developmental trajectory, causing permanent functional and structural perturbations that in the long term may enhance disease susceptibility. However, while solid evidence has documented that fluctuations in environmental factors, ranging from nutrient availability to chemicals, in early developmental stages (including the peri-conceptional period) have discernible programming effects that increase vulnerability to develop metabolic perturbations, the impact and eventual mechanisms involved, of such developmental alterations on the reproductive phenotype of offspring have received less attention.This review will summarize recent advances in basic and clinical research that support the concept of DOHaD in the context of the impact of nutritional and hormonal perturbations, occurring during the periconceptional, fetal and early postnatal stages, on different aspects of reproductive function in both sexes. Special emphasis will be given to the effects of early nutritional stress on the timing of puberty and adult gonadotropic function, and to address the underlying neuroendocrine pathways, with particular attention to involvement of the Kiss1 system in these reproductive perturbations. The implications of such phenomena in terms of reproductive medicine will also be considered.A comprehensive MEDLINE search, using PubMed as main interface, of research articles and reviews, published mainly between 2006 and 2021, has been carried out. Search was implemented using multiple terms, focusing on clinical and preclinical data from DOHaD studies, addressing periconceptional, gestational and perinatal programming of reproduction. Selected studies addressing early programming of metabolic function have also been considered, when relevant.A solid body of evidence, from clinical and preclinical studies, has documented the impact of nutritional and hormonal fluctuations during the periconceptional, prenatal and early postnatal periods on pubertal maturation, as well as adult gonadotropic function and fertility. Furthermore, exposure to environmental chemicals, such as bisphenol A, and maternal stress has been shown to negatively influence pubertal development and gonadotropic function in adulthood. The underlying neuroendocrine pathways and mechanisms involved have been also addressed, mainly by preclinical studies, which have identified an, as yet incomplete, array of molecular and neurohormonal effectors. These include, prominently, epigenetic regulatory mechanisms and the hypothalamic Kiss1 system, which likely contribute to the generation of reproductive alterations in conditions of early nutritional and/or metabolic stress. In addition to the Kiss1 system, other major hypothalamic regulators of GnRH neurosecretion, such as γ-aminobutyric acid and glutamate, may be targets of developmental programming.This review addresses an underdeveloped area of reproductive biology and medicine that may help to improve our understanding of human reproductive disorders and stresses the importance, and eventual pathogenic impact, of early determinants of puberty, adult reproductive function and fertility.

16 citations


Journal ArticleDOI
TL;DR: For instance, this paper found abundant evidence of plastic behavioral changes in urban animals, including learning, contextual, developmental, and transgenerational plasticities, such as altered habitat use, migration, diurnal and seasonal activity, and courtship.
Abstract: Plasticity-led evolution is central to evolutionary theory. Although challenging to study in nature, this process may be particularly apparent in novel environments such as cities. We document abundant evidence of plastic behavioral changes in urban animals, including learning, contextual, developmental, and transgenerational plasticities. Using behavioral drive as a conceptual framework, our analysis of notable case studies suggests that plastic behaviors, such as altered habitat use, migration, diurnal and seasonal activity, and courtship, can have faciliatory and cascading effects on urban evolution via spatial, temporal, and mate-choice mechanisms. Our findings highlight (i) the need to incorporate behavioral plasticity more formally into urban evolutionary research and (ii) the opportunity provided by urban environments to study behavioral mechanisms of plasticity-led processes.

14 citations


Journal ArticleDOI
TL;DR: This review will summarize recent advances in basic and clinical research that support the concept of DOHaD in the context of the impact of nutritional and hormonal perturbations, occurring during the periconceptional, fetal and early postnatal stages, on different aspects of reproductive function in both sexes.
Abstract: Abstract BACKGROUND According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, environmental changes taking place during early maturational periods may alter normal development and predispose to the occurrence of diverse pathologies later in life. Indeed, adverse conditions during these critical developmental windows of high plasticity have been reported to alter the offspring developmental trajectory, causing permanent functional and structural perturbations that in the long term may enhance disease susceptibility. However, while solid evidence has documented that fluctuations in environmental factors, ranging from nutrient availability to chemicals, in early developmental stages (including the peri-conceptional period) have discernible programming effects that increase vulnerability to develop metabolic perturbations, the impact and eventual mechanisms involved, of such developmental alterations on the reproductive phenotype of offspring have received less attention. OBJECTIVE AND RATIONALE This review will summarize recent advances in basic and clinical research that support the concept of DOHaD in the context of the impact of nutritional and hormonal perturbations, occurring during the periconceptional, fetal and early postnatal stages, on different aspects of reproductive function in both sexes. Special emphasis will be given to the effects of early nutritional stress on the timing of puberty and adult gonadotropic function, and to address the underlying neuroendocrine pathways, with particular attention to involvement of the Kiss1 system in these reproductive perturbations. The implications of such phenomena in terms of reproductive medicine will also be considered. SEARCH METHODS A comprehensive MEDLINE search, using PubMed as main interface, of research articles and reviews, published mainly between 2006 and 2021, has been carried out. Search was implemented using multiple terms, focusing on clinical and preclinical data from DOHaD studies, addressing periconceptional, gestational and perinatal programming of reproduction. Selected studies addressing early programming of metabolic function have also been considered, when relevant. OUTCOMES A solid body of evidence, from clinical and preclinical studies, has documented the impact of nutritional and hormonal fluctuations during the periconceptional, prenatal and early postnatal periods on pubertal maturation, as well as adult gonadotropic function and fertility. Furthermore, exposure to environmental chemicals, such as bisphenol A, and maternal stress has been shown to negatively influence pubertal development and gonadotropic function in adulthood. The underlying neuroendocrine pathways and mechanisms involved have been also addressed, mainly by preclinical studies, which have identified an, as yet incomplete, array of molecular and neurohormonal effectors. These include, prominently, epigenetic regulatory mechanisms and the hypothalamic Kiss1 system, which likely contribute to the generation of reproductive alterations in conditions of early nutritional and/or metabolic stress. In addition to the Kiss1 system, other major hypothalamic regulators of GnRH neurosecretion, such as γ-aminobutyric acid and glutamate, may be targets of developmental programming. WIDER IMPLICATIONS This review addresses an underdeveloped area of reproductive biology and medicine that may help to improve our understanding of human reproductive disorders and stresses the importance, and eventual pathogenic impact, of early determinants of puberty, adult reproductive function and fertility.

14 citations


Journal ArticleDOI
TL;DR: In this article , the consequences of phenotypic plasticity on relationships and interactions between plants and insects and its impact on their development, evolution, speciation and ecological organization are explored.

11 citations


Journal ArticleDOI
TL;DR: Phenotypic results align with an increasing number of studies demonstrating the potential for stronger selection of thermal stress on reproductive traits, particularly in males, and identify differentiated loci with relevant phenotypic effects that may contribute to this population variation.
Abstract: Abstract Increasing temperature and thermal variability generate profound selection on populations. Given the fast rate of environmental change, understanding the role of plasticity and genetic adaptation in response to increasing temperatures is critical. This may be especially true for thermal effects on reproductive traits in which thermal fertility limits at high temperatures may be lower than for survival traits. Consequences of changing environments during development on adult phenotypes may be particularly problematic for core traits such as reproduction that begin early in development. Here we examine the consequences of developmental thermal plasticity on subsequent adult reproductive traits and its genetic basis. We used a panel of Drosophila melanogaster (the Drosophila Genetic Reference Panel; DGRP) in which male fertility performance was previously defined as either showing relatively little (status = ‘high’‐performing lines) or substantial (‘low’‐performing lines) decline when exposed to increasing developmental temperatures. We used a thermal reaction norm approach to quantify variation in the consequences of developmental thermal plasticity on multiple adult reproductive traits, including sex‐specific responses, and to identify candidate genes underlying such variation. Developmental thermal stress impacted the means and thermal reaction norms of all reproductive traits except offspring sex ratio. Mating success declined as temperature increased with no difference between high and low lines, whereas increasing temperature resulted in declines for both male and female fertility and productivity but depended on line status. Fertility and offspring number were positively correlated within and between the sexes across lines, but males were more affected than females. We identified 933 SNPs with significant evolved genetic differentiation between high and low lines. In all, 54 of these lie within genomic windows of overall high differentiation, have significant effects of genotype on the male thermal reaction norm for productivity and are associated with 16 genes enriched for phenotypes affecting reproduction, stress responses and autophagy in Drosophila and other organisms. Our results illustrate considerable plasticity in male thermal limits on several reproductive traits following development at high temperature, and we identify differentiated loci with relevant phenotypic effects that may contribute to this population variation. While our work is on a single population, phenotypic results align with an increasing number of studies demonstrating the potential for stronger selection of thermal stress on reproductive traits, particularly in males. Such large fitness costs may have both short‐ and long‐term consequences for the evolution of populations in response to a warming world.

9 citations


Journal ArticleDOI
TL;DR: A dynamic view of embryos as organisms capable of responding to their developmental environments is advocated, rather than assuming an inability of pre‐hatching stages to adapt and respond, to broaden the ontogenetic breadth of evolutionary and ecological research.
Abstract: Adaptations of post‐hatching animals have attracted far more study than have embryonic responses to environmental challenges, but recent research suggests that we have underestimated the complexity and flexibility of embryos. We advocate a dynamic view of embryos as organisms capable of responding – on both ecological and evolutionary timescales – to their developmental environments. By viewing embryos in this way, rather than assuming an inability of pre‐hatching stages to adapt and respond, we can broaden the ontogenetic breadth of evolutionary and ecological research. Both biotic and abiotic factors affect embryogenesis, and embryos exhibit a broad range of behavioural and physiological responses that enable them to deal with changes in their developmental environments in the course of interactions with their parents, with other embryos, with predators, and with the physical environment. Such plasticity may profoundly affect offspring phenotypes and fitness, and in turn influence the temporal and spatial dynamics of populations and communities. Future research in this field could benefit from an integrated framework that combines multiple approaches (field investigations, manipulative experiments, ecological modelling) to clarify the mechanisms and consequences of embryonic adaptations and plasticity.

9 citations


Journal ArticleDOI
TL;DR: Examples of hippocampal and cortical paradigms of plasticity and of retinal structural rearrangements found in organization and circuitry following altered developmental conditions or occurrence of genetic diseases leading to neuronal degeneration are reviewed.
Abstract: Brain plasticity is a well-established concept designating the ability of central nervous system (CNS) neurons to rearrange as a result of learning, when adapting to changeable environmental conditions or else while reacting to injurious factors. As a part of the CNS, the retina has been repeatedly probed for its possible ability to respond plastically to a variably altered environment or to pathological insults. However, numerous studies support the conclusion that the retina, outside the developmental stage, is endowed with only limited plasticity, exhibiting, instead, a remarkable ability to maintain a stable architectural and functional organization. Reviewed here are representative examples of hippocampal and cortical paradigms of plasticity and of retinal structural rearrangements found in organization and circuitry following altered developmental conditions or occurrence of genetic diseases leading to neuronal degeneration. The variable rate of plastic changes found in mammalian retinal neurons in different circumstances is discussed, focusing on structural plasticity. The likely adaptive value of maintaining a low level of plasticity in an organ subserving a sensory modality that is dominant for the human species and that requires elevated fidelity is discussed.

7 citations


Journal ArticleDOI
03 Mar 2022-Oikos
TL;DR: In this paper , the authors examined the physiological differences across genotypes (sibships) of spadefoot toad larvae with different degrees of plasticity in response to predator cues and found that increased plasticity was associated with oxidative stress or immune suppression.
Abstract: Phenotypic plasticity allows organisms to improve the match between their phenotype and heterogeneous environments. Theoretical models have argued that costs of maintaining the sensory and response machinery necessary for adaptive phenotypic plasticity are important determinants to the evolution of plasticity. Despite recurrent arguments invoking putative metabolic costs associated with maintenance of cellular machinery, no studies have yet attempted to quantify it from a molecular standpoint. Here we experimentally examine physiological differences across genotypes (sibships) of spadefoot toad larvae with different degrees of plasticity in response to predator cues. We observed marked differences across sibships in developmental, growth and morphological responses to predators, and tested whether increased plasticity was associated with oxidative stress or immune suppression. We observed that more plastic sibships experienced higher antioxidant enzymatic activity when reared in the absence of predator cues, i.e. not expressing their plastic responses. The degree of plasticity was also associated with higher lipid peroxidation and slightly greater granulocyte-to-lymphocyte ratio. Higher antioxidant activity in highly plastic sibships suggests that maintenance of phenotypic plasticity may be linked to energy demanding metabolic processes. Our findings suggest that having the potential to produce plastic responses may incur oxidative and immunological costs. In the long term, such maintenance costs may erode individual fitness and even constrain the evolution of plasticity. To our knowledge, this is the first empirical evidence indicating the existence of a physiological cost to the maintenance of phenotypic plasticity.

6 citations


Journal ArticleDOI
TL;DR: In this article , the capacity for temperature-induced developmental plasticity varies with latitude and whether population-specific biogeographic background accounts for the different degree of plastic responses to temperature.


Journal ArticleDOI
TL;DR: In this paper , the moor frog Rana arvalis showed adaptive divergence in larval life-histories and predator defense traits along an acidification gradient in Sweden, and the role of corticosterone (CORT) in this adaptive divergence was investigated.
Abstract: Physiological processes, as immediate responses to the environment, are important mechanisms of phenotypic plasticity and can influence evolution at ecological time scales. In stressful environments, physiological stress responses of individuals are initiated and integrated via the release of hormones, such as corticosterone (CORT). In vertebrates, CORT influences energy metabolism and resource allocation to multiple fitness traits (e.g. growth and morphology) and can be an important mediator of rapid adaptation to environmental stress, such as acidification. The moor frog, Rana arvalis, shows adaptive divergence in larval life-histories and predator defense traits along an acidification gradient in Sweden. Here we take a first step to understanding the role of CORT in this adaptive divergence. We conducted a fully factorial laboratory experiment and reared tadpoles from three populations (one acidic, one neutral and one intermediate pH origin) in two pH treatments (Acid versus Neutral pH) from hatching to metamorphosis. We tested how the populations differ in tadpole CORT profiles and how CORT is associated with tadpole life-history and morphological traits.We found clear differences among the populations in CORT profiles across different developmental stages, but only weak effects of pH treatment on CORT. Tadpoles from the acid origin population had, on average, lower CORT levels than tadpoles from the neutral origin population, and the intermediate pH origin population had intermediate CORT levels. Overall, tadpoles with higher CORT levels developed faster and had shorter and shallower tails, as well as shallower tail muscles.Our common garden results indicate among population divergence in CORT levels, likely reflecting acidification mediated divergent selection on tadpole physiology, concomitant to selection on larval life-histories and morphology. However, CORT levels were highly environmental context dependent. Jointly these results indicate a potential role for CORT as a mediator of multi-trait divergence along environmental stress gradients in natural populations. At the same time, the population level differences and high context dependency in CORT levels suggest that snapshot assessment of CORT in nature may not be reliable bioindicators of stress.

Journal ArticleDOI
TL;DR: In this article , the authors investigate how early life experiences can have lasting impacts on how individuals respond to environmental variation later in life (i.e., individual reaction norms), altering the capacity for populations to respond to selection.
Abstract: Abstract Phenotypic plasticity is an important mechanism that allows populations to adjust to changing environments. Early life experiences can have lasting impacts on how individuals respond to environmental variation later in life (i.e., individual reaction norms), altering the capacity for populations to respond to selection. Here, we incubated lizard embryos ( Lampropholis delicata ) at two fluctuating developmental temperatures (cold = 23 ºC + / − 3 ºC, hot = 29 ºC + / − 3 ºC, n cold = 26, n hot = 25) to understand how it affected metabolic plasticity to temperature later in life. We repeatedly measured individual reaction norms across six temperatures 10 times over ~ 3.5 months (n obs = 3,818) to estimate the repeatability of average metabolic rate (intercept) and thermal plasticity (slope). The intercept and the slope of the population-level reaction norm was not affected by developmental temperature. Repeatability of average metabolic rate was, on average, 10% lower in hot incubated lizards but stable across all temperatures. The slope of the thermal reaction norm was overall moderately repeatable ( R = 0.44, 95% CI = 0.035 – 0.93) suggesting that individual metabolic rate changed consistently with short-term changes in temperature, although credible intervals were quite broad. Importantly, reaction norm repeatability did not depend on early developmental temperature. Identifying factors affecting among-individual variation in thermal plasticity will be increasingly more important for terrestrial ectotherms living in changing climate. Our work implies that thermal metabolic plasticity is robust to early developmental temperatures and has the capacity to evolve, despite there being less consistent variation in metabolic rate under hot environments.

Journal ArticleDOI
TL;DR: In this paper , the moor frog Rana arvalis showed adaptive divergence in larval life-histories and predator defense traits along an acidification gradient in Sweden, and the role of corticosterone (CORT) in this adaptive divergence was investigated.
Abstract: Physiological processes, as immediate responses to the environment, are important mechanisms of phenotypic plasticity and can influence evolution at ecological time scales. In stressful environments, physiological stress responses of individuals are initiated and integrated via the release of hormones, such as corticosterone (CORT). In vertebrates, CORT influences energy metabolism and resource allocation to multiple fitness traits (e.g. growth and morphology) and can be an important mediator of rapid adaptation to environmental stress, such as acidification. The moor frog, Rana arvalis, shows adaptive divergence in larval life-histories and predator defense traits along an acidification gradient in Sweden. Here we take a first step to understanding the role of CORT in this adaptive divergence. We conducted a fully factorial laboratory experiment and reared tadpoles from three populations (one acidic, one neutral and one intermediate pH origin) in two pH treatments (Acid versus Neutral pH) from hatching to metamorphosis. We tested how the populations differ in tadpole CORT profiles and how CORT is associated with tadpole life-history and morphological traits.We found clear differences among the populations in CORT profiles across different developmental stages, but only weak effects of pH treatment on CORT. Tadpoles from the acid origin population had, on average, lower CORT levels than tadpoles from the neutral origin population, and the intermediate pH origin population had intermediate CORT levels. Overall, tadpoles with higher CORT levels developed faster and had shorter and shallower tails, as well as shallower tail muscles.Our common garden results indicate among population divergence in CORT levels, likely reflecting acidification mediated divergent selection on tadpole physiology, concomitant to selection on larval life-histories and morphology. However, CORT levels were highly environmental context dependent. Jointly these results indicate a potential role for CORT as a mediator of multi-trait divergence along environmental stress gradients in natural populations. At the same time, the population level differences and high context dependency in CORT levels suggest that snapshot assessment of CORT in nature may not be reliable bioindicators of stress.

Journal ArticleDOI
TL;DR: In this article , the moor frog Rana arvalis showed adaptive divergence in larval life-histories and predator defense traits along an acidification gradient in Sweden, and the role of corticosterone (CORT) in this adaptive divergence was investigated.
Abstract: Physiological processes, as immediate responses to the environment, are important mechanisms of phenotypic plasticity and can influence evolution at ecological time scales. In stressful environments, physiological stress responses of individuals are initiated and integrated via the release of hormones, such as corticosterone (CORT). In vertebrates, CORT influences energy metabolism and resource allocation to multiple fitness traits (e.g. growth and morphology) and can be an important mediator of rapid adaptation to environmental stress, such as acidification. The moor frog, Rana arvalis, shows adaptive divergence in larval life-histories and predator defense traits along an acidification gradient in Sweden. Here we take a first step to understanding the role of CORT in this adaptive divergence. We conducted a fully factorial laboratory experiment and reared tadpoles from three populations (one acidic, one neutral and one intermediate pH origin) in two pH treatments (Acid versus Neutral pH) from hatching to metamorphosis. We tested how the populations differ in tadpole CORT profiles and how CORT is associated with tadpole life-history and morphological traits.We found clear differences among the populations in CORT profiles across different developmental stages, but only weak effects of pH treatment on CORT. Tadpoles from the acid origin population had, on average, lower CORT levels than tadpoles from the neutral origin population, and the intermediate pH origin population had intermediate CORT levels. Overall, tadpoles with higher CORT levels developed faster and had shorter and shallower tails, as well as shallower tail muscles.Our common garden results indicate among population divergence in CORT levels, likely reflecting acidification mediated divergent selection on tadpole physiology, concomitant to selection on larval life-histories and morphology. However, CORT levels were highly environmental context dependent. Jointly these results indicate a potential role for CORT as a mediator of multi-trait divergence along environmental stress gradients in natural populations. At the same time, the population level differences and high context dependency in CORT levels suggest that snapshot assessment of CORT in nature may not be reliable bioindicators of stress.

Journal ArticleDOI
TL;DR: In this paper , a developmental system perspective is proposed, where phenotypes are formed during individual development in a process comprising a complex set of interactions that involve genes, biochemistry, somatic state, and the (a)biotic environment.
Abstract: There are increasing calls to incorporate developmental plasticity into the framework of eco-evolutionary dynamics. The current way is via genotype-specified reaction norms in which inheritance and phenotype expression are gene-based. I propose a developmental system perspective in which phenotypes are formed during individual development in a process comprising a complex set of interactions that involve genes, biochemistry, somatic state, and the (a)biotic environment, and where the developmental system is the unit of phenotype evolution. I explain how the two perspectives differ in assumptions and predictions, which can be contrasted using cue-and-response systems of anticipatory or mitigating developmental plasticity. This can lead to new ways of eco-evolutionary thinking, and deliver important explanations of how populations respond to environmental change through evolved developmental plasticity.

Journal ArticleDOI
TL;DR: In this paper , the authors investigated how developmental temperature affects the thermal performance curve for locomotor activity in adult fruit flies (Drosophila melanogaster) and found that high developmental temperature has a significant impact on overall activity.


Posted ContentDOI
15 Aug 2022-bioRxiv
TL;DR: It is demonstrated that declines in the amplitude of intrinsic activity are initiated heterochronously across regions, coupled to the maturation of a plasticity-restricting structural feature, and temporally staggered along a hierarchical sensorimotor-association axis from ages 8 to 18.
Abstract: Animal studies of neurodevelopmental plasticity have shown that intrinsic brain activity evolves from high amplitude and globally synchronized to suppressed and sparse as plasticity declines and the cortex matures. Leveraging resting-state functional MRI data from 1033 individuals (8-23 years), we reveal that this stereotyped refinement of intrinsic activity occurs during human development and provides evidence for a cortical gradient of neurodevelopmental plasticity during childhood and adolescence. Specifically, we demonstrate that declines in the amplitude of intrinsic activity are initiated heterochronously across regions, coupled to the maturation of a plasticity-restricting structural feature, and temporally staggered along a hierarchical sensorimotor-association axis from ages 8 to 18. Youth from disadvantaged environments exhibit reduced intrinsic activity in regions further up the sensorimotor-association axis, suggestive of a reduced level of plasticity in late-maturing cortices. Our results uncover a hierarchical axis of neurodevelopment and offer insight into the temporal sequence of protracted neurodevelopmental plasticity in humans.

Posted ContentDOI
18 Mar 2022-bioRxiv
TL;DR: Using the multi-modal MRI data from developing human connectome project, data suggest in human newborns that early postnatal experience shapes the structural and functional development of the visual cortex in selective and organized pattern.
Abstract: Experience-dependent cortical plasticity is a pivotal process of human brain development and essential for the formation of most cognitive functions. Although studies found that early visual experience could influence the endogenous development of visual cortex in animals, little is known about such impact on human infants. Using the multi-modal MRI data from developing human connectome project, we revealed the early structural and functional maps in the ventral visual cortex and their development across the first month of age. Particularly, we found the postnatal experience could modulate both the cortical morphology in ventral visual cortex and the functional circuit between bilateral primary visual cortices. But the cortical myelination and overall functional circuits of ventral cortex, particularly that of the high-order visual cortex, developed without significant influence of postnatal experience in such early period. These experience-dependent cortical properties were further validated in the preterm-born infants who have longer postnatal time but immature cortical development at birth. The results confirmed that the development of cortical thickness was dominated by the postnatal experience but the functional circuit might be determined by the overall maturity of visual cortex. These data suggest in human newborns that early postnatal experience shapes the structural and functional development of the visual cortex in selective and organized pattern.

Journal ArticleDOI
TL;DR: The hypothesis that changes in horn shape—whether brought about by environmentally plastic responses, functional manipulations or evolutionary divergences—converge along ‘developmental lines of least resistance’, i.e. are biased by the developmental system underpinning horn shape is supported.
Abstract: The degree to which developmental systems bias the phenotypic effects of environmental and genetic variation, and how these biases affect evolution, is subject to much debate. Here, we assess whether developmental variability in beetle horn shape aligns with the phenotypic effects of plasticity and evolutionary divergence, yielding three salient results. First, we find that most pathways previously shown to regulate horn length also affect shape. Second, we find that the phenotypic effects of manipulating divergent developmental pathways are correlated with each other as well as multivariate fluctuating asymmetry—a measure of developmental variability. Third, these effects further aligned with thermal plasticity, population differences and macroevolutionary divergence between sister taxa and more distantly related species. Collectively, our results support the hypothesis that changes in horn shape—whether brought about by environmentally plastic responses, functional manipulations or evolutionary divergences—converge along ‘developmental lines of least resistance’, i.e. are biased by the developmental system underpinning horn shape.

Journal ArticleDOI
TL;DR: In this paper , the root development occurs in three main phases: root apical meristem appearance, foraging, and senescence, and the root developmental pathways differentially coordinate organ plasticity, promoting morphological alterations, tissue regeneration, and cell death regulation.
Abstract: Efficient use of natural resources (e.g., light, water, and nutrients) can be improved with a tailored developmental program that maximizes the lifetime and fitness of plants. In plant shoots, a developmental phase represents a time window in which the meristem triggers the development of unique morphological and physiological traits, leading to the emergence of leaves, flowers, and fruits. Whereas developmental phases in plant shoots have been shown to enhance food production in crops, this phenomenon has remained poorly investigated in roots. In light of recent advances, we suggest that root development occurs in three main phases: root apical meristem appearance, foraging, and senescence. We provide compelling evidence suggesting that these phases are regulated by at least four developmental pathways: autonomous, non-autonomous, hormonal, and periodic. Root developmental pathways differentially coordinate organ plasticity, promoting morphological alterations, tissue regeneration, and cell death regulation. Furthermore, we suggest how nutritional checkpoints may allow progression through the developmental phases, thus completing the root life cycle. These insights highlight novel and exciting advances in root biology that may help maximize the productivity of crops through more sustainable agriculture and the reduced use of chemical fertilizers.

Journal ArticleDOI
TL;DR: The results suggest that neither genetic programmes for parenting nor their effects on offspring gene expression are fundamentally different under stressful conditions, and that behavioural stability is associated primarily with the maintenance of existing genetic programmes rather than replacement or supplementation.
Abstract: Flexible interactions between parents and offspring are essential for buffering families against variable, unpredictable, and challenging environmental conditions. In the subsocial carrion beetle, Nicrophorus orbicollis, mid‐summer temperatures impose steep fitness costs on parents and offspring but do not elicit behavioural plasticity in parents. Here, we ask if plasticity of gene expression underpins this behavioural stability or facilitates independent compensation by larvae. To test this, we characterized gene expression of parents and offspring before and during active parenting under benign (20°C) and stressful (24°C) temperatures to identify genes of parents and offspring associated with thermal response, parenting/being parented, and gene expression plasticity associated with behavioural stability of parental care. The main effects of thermal and social condition each shaped patterns of gene expression in females, males, and larvae. In addition, we implicated 79 genes in females as “buffering” parental behaviour across environments. The majority of these underwent significant changes in expression in actively parenting mothers at the benign temperature, but not at the stressful temperature. Our results suggest that neither genetic programmes for parenting nor their effects on offspring gene expression are fundamentally different under stressful conditions, and that behavioural stability is associated primarily with the maintenance of existing genetic programmes rather than replacement or supplementation. Thus, while selection for compensatory gene expression could expand the range of thermal conditions parents will tolerate, without expanding the toolkit of genes involved selection is unlikely to lead to adaptive changes of function.

Journal ArticleDOI
TL;DR: The release of cryptic genetic variation in spermatheca number in the face of strong environmental variation may expose hidden traits to natural selection, and once exposed, hidden traits can potentially undergo rapid genetic assimilation.
Abstract: Understanding how environmental variation influences even cryptic traits is important to clarify the roles of selection and developmental constraints in past evolutionary divergence and to predict future adaptation under environmental change. Female yellow dung flies (Scathophaga stercoraria) typically have three sperm storage compartments (3S), but occasionally four (4S). More spermathecae are thought to be a female adaptation facilitating sperm sorting after mating, but the phenotype is very rare in nature. We manipulated the flies' developmental environment by food restriction, pesticides, and hot temperatures to investigate the nature and extent of developmental plasticity of this trait, and whether spermatheca expression correlates with measures of performance and developmental stability, as would be expected if 4S expression is a developmental aberration. The spermathecal polymorphism of yellow dung fly females is heritable, but also highly developmentally plastic, varying strongly with rearing conditions. 4S expression is tightly linked to growth rate, and weakly positively correlated with fluctuating asymmetry of wings and legs, suggesting that the production of a fourth spermatheca could be a nonadaptive developmental aberration. However, spermathecal plasticity is opposite in the closely related and ecologically similar Scathophaga suilla, demonstrating that overexpression of spermathecae under developmental stress is not universal. At the same time, we found overall mortality costs as well as benefits of 4S pheno‐ and genotypes (also affecting male siblings), suggesting that a life history trade‐off may potentially moderate 4S expression. We conclude that the release of cryptic genetic variation in spermatheca number in the face of strong environmental variation may expose hidden traits (here reproductive morphology) to natural selection (here under climate warming or food augmentation). Once exposed, hidden traits can potentially undergo rapid genetic assimilation, even in cases when trait changes are first triggered by random errors that destabilize developmental processes.


Journal ArticleDOI
TL;DR: In this article , the evidence for a role of developmental plasticity in warming-driven size reductions in birds and highlight insulin-like growth factors as a potential mechanism underlying plastic responses to temperature in endotherms.
Abstract: As temperatures increase, there is growing evidence that species across much of the tree of life are getting smaller. These climate change-driven size reductions are often interpreted as a temporal analogue of the observation that individuals within a species tend to be smaller in the warmer parts of the species' range. For ectotherms, there has been a broad effort to understand the role of developmental plasticity in temperature–size relationships, but in endotherms, this mechanism has received relatively little attention in favour of selection-based explanations. We review the evidence for a role of developmental plasticity in warming-driven size reductions in birds and highlight insulin-like growth factors as a potential mechanism underlying plastic responses to temperature in endotherms. We find that, as with ectotherms, changes in temperature during development can result in shifts in body size in birds, with size reductions associated with warmer temperatures being the most frequent association. This suggests developmental plasticity may be an important, but largely overlooked, mechanism underlying warming-driven size reductions in endotherms. Plasticity and natural selection have very different constraining forces, thus understanding the mechanism linking temperature and body size in endotherms has broad implications for predicting future impacts of climate change on biodiversity.

Journal ArticleDOI
TL;DR: In this paper , the effects of developmental environments on animal personality are driven by changes in within- or between-individual variation, and the results suggest the potential for greater behavioral plasticity in skinks incubated at a higher temperature, which may enable them to cope with environmental change, such as climate warming.
Abstract: Abstract Developmental environments play a significant role in shaping animal phenotype, including behavior. Within a species, individuals often differ in behavior in a consistent and repeatable way (i.e., demonstrate animal personality). This consistency in behavior can be affected by differences in conditions experienced early in life. It is, however, unclear whether effects of developmental environments on animal personality are driven by changes in within- or between-individual variation. To investigate this, we measured activity, exploration, sociability, and boldness in adult male southern rainforest sunskinks, Lampropholis similis , incubated at either 23 °C or 26 °C, and compared behavioral phenotypes between these incubation treatments. We also compared the behavior of these incubation groups to a cohort of wild-caught skinks to determine whether rearing in captivity also affected the personality of the lizards. Skinks that had been incubated at a higher temperature were more explorative and demonstrated personality in a larger suite of traits compared to lizards incubated at a lower temperature or caught in the wild. These differences among developmental environment were primarily driven by within-individual variation, which tended to be higher among the high incubation treatment. We also found no evidence for a behavioral syndrome in either captive- or wild-reared skinks. Our results suggest the potential for greater behavioral plasticity in skinks incubated at a higher temperature, which may enable them to cope with environmental change, such as climate warming, in the short term. Overall, we show that effects of developmental environment are complex and play a pivotal role in shaping animal personality. Significance statement Experiences during development are expected to influence how animals develop, including their behavior. We tested early environment effects on behavior in adult southern rainforest sunskinks by comparing lizards incubated at different temperatures as well as comparing those reared in the wild with those reared in captive environments. We found that lizards incubated at the higher temperature were more exploratory. Furthermore, both incubation temperature and captivity/wild-rearing had pronounced effects on the consistency of behavior—in different directions for different traits—demonstrating developmental environments have strong effects on animal personality. Such changes in behavioral traits likely have flow-on effects for the animal’s fitness and biotic interactions.

Journal ArticleDOI
TL;DR: In this article , a field experiment with Abutilon theophrasti, by subjecting plants to three densities under infertile vs. fertile soil conditions, showed that increased density led to lower leaf FA, CVintra, and PIrel and higher CVinter in fertile soil.
Abstract: Abstract Developmental stability, canalization, and phenotypic plasticity are the most common sources of phenotypic variation, yet comparative studies investigating the relationships between these sources, specifically in plants, are lacking. To investigate the relationships among developmental stability or instability, developmental variability, canalization, and plasticity in plants, we conducted a field experiment with Abutilon theophrasti, by subjecting plants to three densities under infertile vs. fertile soil conditions. We measured the leaf width (leaf size) and calculated fluctuating asymmetry (FA), coefficient of variation within and among individuals (CVintra and CVinter), and plasticity (PIrel) in leaf size at days 30, 50, and 70 of plant growth, to analyze the correlations among these variables in response to density and soil conditions, at each of or across all growth stages. Results showed increased density led to lower leaf FA, CVintra, and PIrel and higher CVinter in fertile soil. A positive correlation between FA and PIrel occurred in infertile soil, while correlations between CVinter and PIrel and between CVinter and CVintra were negative at high density and/or in fertile soil, with nonsignificant correlations among them in other cases. Results suggested the complexity of responses of developmental instability, variability, and canalization in leaf size, as well as their relationships, which depend on the strength of stresses. Intense aboveground competition that accelerates the decrease in leaf size (leading to lower plasticity) will be more likely to reduce developmental instability, variability, and canalization in leaf size. Increased developmental instability and intra‐ and interindividual variability should be advantageous and facilitate adaptive plasticity in less stressful conditions; thus, they are more likely to positively correlate with plasticity, whereas developmental stability and canalization with lower developmental variability should be beneficial for stabilizing plant performance in more stressful conditions, where they tend to have more negative correlations with plasticity.

Journal ArticleDOI
TL;DR: This work highlights the important role that astrocytes and adenosine seem to play in controlling the duration of these critical periods of plasticity in adults.
Abstract: Windows of plasticity are fundamental for the correct formation of definitive brain circuits; these periods drive sensory and motor learning during development and ultimately learning and memory in adults. However, establishing windows of plasticity also imposes limitations on the central nervous system in terms of its capacity to recover from injury. Recent evidence highlights the important role that astrocytes and adenosine seem to play in controlling the duration of these critical periods of plasticity.