scispace - formally typeset
Search or ask a question
Topic

Developmental plasticity

About: Developmental plasticity is a research topic. Over the lifetime, 1721 publications have been published within this topic receiving 103438 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is discussed the possibility that intracellular Ca(2+) stores may regulate synaptic plasticity and hence behavioral and cognitive functions at the interface between physiology and pathology and the fundamental role of endoplasmic reticulum-mediated Ca( 2+) signals is highlighted.

50 citations

Journal ArticleDOI
TL;DR: It is hypothesized that desert spadefoot tadpoles have evolved reduced plasticity to avoid desiccation in ephemeral desert pools compared to their nondesert relatives that breed in long‐duration ponds.
Abstract: Organisms vary their rates of growth and development in response to environmental inputs. Such developmental plasticity may be adaptive and positively correlate with environmental heterogeneity. However, the evolution of developmental plasticity among closely related taxa is not well understood. To determine the evolutionary pattern of plasticity, we compared plasticity in time to and size at metamorphosis in response to water desiccation in tadpoles among spadefoot species that differ in breeding pond and larval period durations. Like most tadpoles, spadefoot tadpoles possess the remarkable ability to accelerate development in response to pond drying to avoid desiccation. Here, we hypothesize that desert spadefoot tadpoles have evolved reduced plasticity to avoid desiccation in ephemeral desert pools compared to their nondesert relatives that breed in long-duration ponds. We recorded time to and size at metamorphosis following experimental manipulation of water levels and found that desert-adapted species had much less plasticity in larval period and size at metamorphosis than nondesert species, which retain the hypothetical ancestral state of plasticity. Furthermore, we observed a correlation between degree of plasticity and fat body content that may provide mechanistic insights into the evolution of developmental plasticity in amphibians.

50 citations

Journal ArticleDOI
TL;DR: A molecular framework for the establishment and regulation of developmental plasticity is proposed through a combination of defined regulatory relationships, spatially organised signalling, and biases from mechanical inputs.
Abstract: Early mammalian embryos exhibit remarkable plasticity, as highlighted by the ability of separated early blastomeres to produce a whole organism. Recent work in the mouse implicates a network of transcription factors in governing the establishment of the primary embryonic lineages. A combination of genetics and embryology has uncovered the organisation and function of the components of this network, revealing a gradual resolution from ubiquitous to lineage-specific expression through a combination of defined regulatory relationships, spatially organised signalling, and biases from mechanical inputs. Here, we summarise this information, link it to classical embryology and propose a molecular framework for the establishment and regulation of developmental plasticity.

49 citations

Journal ArticleDOI
TL;DR: A suppressor screen is used to identify factors downstream of eud-1 in mouth-form regulation and suggests NHR-40 is part of a developmental switch, suggesting that switch mechanisms controlling plasticity consist of multi-component hormonal signaling systems.

49 citations

Journal ArticleDOI
TL;DR: It is suggested that developmental responses of traits plasticity and interaction at critical ontogenetic periods are congruent with specific environmental conditions to maintain the functional integrity of the organism.
Abstract: Environmental conditions such as temperature and water velocity may induce changes among alternative developmental pathways, i.e. phenotypic responses, in vertebrates. However, the extent to which the environment induces developmental plasticity and integrated developmental responses during early ontogeny of fishes remains poorly documented. We analyzed the responses of newly hatched Arctic charr (Salvelinus alpinus) to four experimental water velocities during 100 days of development. To our knowledge, this work is the first to analyze developmental plasticity responses of body morphology to an experimental gradient of water velocities during early ontogeny of fish. Arctic charr body size and shape responses show first, that morphometric traits display significant differences between low and high water velocities, thus revealing directional changes in body traits. Secondly, trait variation allows the recognition of critical ontogenetic periods that are most responsive to environmental constraints (40-70 and 80-90 days) and exhibit different levels of developmental plasticity. This is supported by the observation of asynchronous timing of variation peaks among treatments. Third, morphological interaction of traits is developmentally plastic and time-dependent. We suggest that developmental responses of traits plasticity and interaction at critical ontogenetic periods are congruent with specific environmental conditions to maintain the functional integrity of the organism.

49 citations


Network Information
Related Topics (5)
Hippocampus
34.9K papers, 1.9M citations
83% related
Hippocampal formation
30.6K papers, 1.7M citations
82% related
Glutamate receptor
33.5K papers, 1.8M citations
82% related
Prefrontal cortex
24K papers, 1.9M citations
81% related
Dopaminergic
29K papers, 1.4M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202316
202244
202172
202076
201953
201864