scispace - formally typeset
Search or ask a question
Topic

Developmental plasticity

About: Developmental plasticity is a research topic. Over the lifetime, 1721 publications have been published within this topic receiving 103438 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A computational model of a single representative barrel cell based on the Bienenstock, Cooper, and Munro (BCM) theory of synaptic plasticity suggests the idea of a dynamic synaptic modification threshold, theta M, is general enough to explain plasticity in different species, in different sensory systems, and at different stages of brain maturity.
Abstract: Previous electrophysiological experiments have documented the response of neurons in the adult rat somatic sensory ("barrel") cortex to whisker movement after normal experience and after periods of experience with all but two whiskers trimmed close to the face (whisker "pairing"). To better understand how the barrel cortex adapts to changes in the flow of sensory activity, we have developed a computational model of a single representative barrel cell based on the Bienenstock, Cooper, and Munro (BCM) theory of synaptic plasticity. The hallmark of the BCM theory is the dynamic synaptic modification threshold, theta M, which dictates whether a neuron's activity at any given instant will lead to strengthening or weakening of the synapses impinging on it. The threshold theta M is proportional to the neuron's activity averaged over some recent past. Whisker pairing was simulated by setting input activities of the cell to the noise level, except for two inputs that represented untrimmed whiskers. Initially low levels of cell activity, resulting from whisker trimming, led to low values for theta M. As certain synaptic weights potentiated, due to the activity of the paired inputs, the values of theta M increased and after some time their mean reached an asymptotic value. This saturation of theta M led to the depression of some inputs that were originally potentiated. The changes in cell response generated by the model replicated those observed in in vivo experiments. Previously, the BCM theory has explained salient features of developmental experience-dependent plasticity in kitten visual cortex. Our results suggest that the idea of a dynamic synaptic modification threshold, theta M, is general enough to explain plasticity in different species, in different sensory systems, and at different stages of brain maturity.

42 citations

Journal ArticleDOI
TL;DR: Mechanisms of action of estrogen on neurons and synaptic plasticity, and how they might protect against the cognitive impairments of old age are considered.
Abstract: Converging clinical evidence suggests that postmenopausal estrogen therapy in women is associated with improved cognition and a reduced incidence of Alzheimer's disease. In experimental work, investigators have found estrogen to promote changes in synaptic plasticity within the nervous system. In this article, we review both the clinical and the experimental literature, and consider mechanisms of action of estrogen on neurons and synaptic plasticity, and how they might protect against the cognitive impairments of old age.

42 citations

Journal ArticleDOI
TL;DR: Research on developmental plasticity in reptile thermal ecology should be expanded to include incubation conditions other than mean temperature, consider traits associated with cold-tolerance, and endeavor to understand how developmental Plasticity in thermal ecology traits is beneficial.

42 citations

Journal ArticleDOI

42 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the mechanisms involved in the developmental regulation of silent synapses, and found that a large proportion of the thalamocortical synapses were functionally silent at an early stage in vitro.
Abstract: Long-term synaptic plasticity is thought to underlie synaptic reorganization phenomena that occur during neocortical development. Recently, it has been proposed, that the functional induction of AMPA receptors at silent glutamatergic synapses is of major importance in activity-dependent, developmental plasticity. To investigate the mechanisms involved in the developmental regulation of silent synapses, we analysed the functional maturation of the thalamocortical projection in culture. A large proportion of the thalamocortical synapses were functionally silent at an early stage in vitro. During further differentiation, the incidence of silent synapses decreased drastically, indicating a conversion of silent into functional synapses. Chronic blockade of spontaneous network activity by addition of tetrodotoxin to the culture medium strongly impaired this developmental maturation. Moreover, the developmental decline in the proportion of silent synapses was dramatically accelerated by chronic addition of the neurotrophic factor, insulin. This effect of insulin was partly dependent on spontaneous activity. Thus, insulin appears to be involved in the modulation of long-term developmental plasticity at immature glutamatergic synapses.

42 citations


Network Information
Related Topics (5)
Hippocampus
34.9K papers, 1.9M citations
83% related
Hippocampal formation
30.6K papers, 1.7M citations
82% related
Glutamate receptor
33.5K papers, 1.8M citations
82% related
Prefrontal cortex
24K papers, 1.9M citations
81% related
Dopaminergic
29K papers, 1.4M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202316
202244
202172
202076
201953
201864