scispace - formally typeset
Search or ask a question
Topic

Developmental plasticity

About: Developmental plasticity is a research topic. Over the lifetime, 1721 publications have been published within this topic receiving 103438 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that normally occurring sensory stimulation during the perinatal period influences the typical development and expression of action patterns, and that exploiting the developmental plasticity of the motor system may lead to improved strategies for promoting recovery of function in human infants with motor disorders.
Abstract: Some of the most simple, stereotyped, reflexive, and spinal-mediated motor behaviors expressed by animals display a level of flexibility and plasticity that is not always recognized. We discuss several examples of how coordinated action patterns have been shown to be flexible and adaptive in response to sensory feedback. We focus on interlimb and intralimb coordination during the expression of two action patterns (stepping and the leg extension response) in newborn rats, as well as interlimb motor learning. We also discuss the idea that the spinal cord is a major site for supporting plasticity in the developing motor system. An implication of this research is that normally occurring sensory stimulation during the perinatal period influences the typical development and expression of action patterns, and that exploiting the developmental plasticity of the motor system may lead to improved strategies for promoting recovery of function in human infants with motor disorders.

20 citations

Journal ArticleDOI
TL;DR: It is found that disruption of binocular correlations by monocular deprivation promoted a topographic loss of NMDAR1 expression within the cortical representations of the central visual field and the vertical and horizontal meridians, which can be described as topographic and homeostatic plasticity of NMDA expression, respectively.
Abstract: When normal binocular visual experience is disrupted during postnatal development, it affects the maturation of cortical circuits and often results in the development of poor visual acuity known as amblyopia. Two main factors contribute to the development of amblyopia: visual deprivation and reduced binocular competition. We investigated the affect of these two amblyogenic factors on the expression of the NMDAR1 subunit in the visual cortex because activation of the NMDA receptor is a key mechanism of developmental neural plasticity. We found that disruption of binocular correlations by monocular deprivation promoted a topographic loss of NMDAR1 expression within the cortical representations of the central visual field and the vertical and horizontal meridians. In contrast, binocular deprivation, which primarily affects visual deprivation, promoted an increase in NMDAR1 expression throughout the visual cortex. These different changes in NMDAR1 expression can be described as topographic and homeostatic plasticity of NMDA expression, respectively. In addition, the changes in NMDA expression in the visual cortex provide a greater understanding of the neural mechanisms that underlie the development of amblyopia and the potential for visual recovery.

20 citations

Journal ArticleDOI
TL;DR: This work studies whether the presumed ancestral seasonal plasticity of the rainforest butterfly Bicyclus sanaos is still retained despite the fact that this species inhabits an environmentally stable habitat and indicates that such integration of plastic traits can be broken when the optimal reaction norms for those traits diverge in a new environment.
Abstract: Many organisms display phenotypic plasticity as adaptation to seasonal environmental fluctuations. Often, such seasonal responses entails plasticity of a whole suite of morphological and life-history traits that together contribute to the adaptive phenotypes in the alternative environments. While phenotypic plasticity in general is a well-studied phenomenon, little is known about the evolutionary fate of plastic responses if natural selection on plasticity is relaxed. Here, we study whether the presumed ancestral seasonal plasticity of the rainforest butterfly Bicyclus sanaos (Fabricius, 1793) is still retained despite the fact that this species inhabits an environmentally stable habitat. Being exposed to an atypical range of temperatures in the laboratory revealed hidden reaction norms for several traits, including wing pattern. In contrast, reproductive body allocation has lost the plastic response. In the savannah butterfly, B. anynana (Butler, 1879), these traits show strong developmental plasticity as an adaptation to the contrasting environments of its seasonal habitat and they are coordinated via a common developmental hormonal system. Our results for B. sanaos indicate that such integration of plastic traits – as a result of past selection on expressing a coordinated environmental response – can be broken when the optimal reaction norms for those traits diverge in a new environment.

19 citations

Journal ArticleDOI
24 Mar 2005-Neuron
TL;DR: The receptive field properties of neurons in the developing brain can in many cases be remarkably similar to those of adult neurons, raising the question of why these same neurons need the capacity for such impressive developmental plasticity.

19 citations

Journal ArticleDOI
01 Sep 2017
TL;DR: Developmental plasticity in the intrinsic physiology of HVC projection neurons is demonstrated and intrinsic plasticity may have a role in the process of song learning, and mathematical models are used to deduce possible changes in ionic currents that underlie the physiological changes and to show that the magnitude of the observed changes could alter HVC circuit function.
Abstract: Juvenile male zebra finches learn their songs over distinct auditory and sensorimotor stages, the former requiring exposure to an adult tutor song pattern. The cortical premotor nucleus HVC (acronym is name) plays a necessary role in both learning stages, as well as the production of adult song. Consistent with neural network models where synaptic plasticity mediates developmental forms of learning, exposure to tutor song drives changes in the turnover, density, and morphology of HVC synapses during vocal development. A network's output, however, is also influenced by the intrinsic properties (e.g., ion channels) of the component neurons, which could change over development. Here, we use patch clamp recordings to show cell-type-specific changes in the intrinsic physiology of HVC projection neurons as a function of vocal development. Developmental changes in HVC neurons that project to the basal ganglia include an increased voltage sag response to hyperpolarizing currents and an increased rebound depolarization following hyperpolarization. Developmental changes in HVC neurons that project to vocal-motor cortex include a decreased resting membrane potential and an increased spike amplitude. HVC interneurons, however, show a relatively stable range of intrinsic features across vocal development. We used mathematical models to deduce possible changes in ionic currents that underlie the physiological changes and to show that the magnitude of the observed changes could alter HVC circuit function. The results demonstrate developmental plasticity in the intrinsic physiology of HVC projection neurons and suggest that intrinsic plasticity may have a role in the process of song learning.

19 citations


Network Information
Related Topics (5)
Hippocampus
34.9K papers, 1.9M citations
83% related
Hippocampal formation
30.6K papers, 1.7M citations
82% related
Glutamate receptor
33.5K papers, 1.8M citations
82% related
Prefrontal cortex
24K papers, 1.9M citations
81% related
Dopaminergic
29K papers, 1.4M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202316
202244
202172
202076
201953
201864