scispace - formally typeset
Search or ask a question
Topic

Developmental plasticity

About: Developmental plasticity is a research topic. Over the lifetime, 1721 publications have been published within this topic receiving 103438 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Overall, developmental plasticity and acclimation in the adult stage resulted in very similar patterns of egg size plasticity, suggesting that the most important question when testing the significance of acclamatory changes is not at which stage a given plasticity is induced, but whether plastic responses to environmental change are adaptive or merely physiological constraints.
Abstract: We use a full factorial design to investigate the effects of maternal and paternal developmental temperature, as well as female oviposition temperature, on egg size in the butterfly Bicyclus anynana. Butterflies were raised at two different temperatures and mated in four possible sex-by-parental-temperature crosses. The mated females were randomly divided between high and low oviposition temperatures. On the first day after assigning the females to different temperatures, only female developmental temperature affected egg size. Females reared at the lower temperature laid larger eggs than those reared at a higher temperature. When eggs were measured again after an acclimation period of 10 days, egg size was principally determined by the prevailing temperature during oviposition, with females ovipositing at a lower temperature laying larger eggs. In contrast to widely used assumptions, the effects of developmental temperature were largely reversible. Male developmental temperature did not affect egg size in either of the measurements. Overall, developmental plasticity and acclimation in the adult stage resulted in very similar patterns of egg size plasticity. Consequently, we argue that the most important question when testing the significance of acclamatory changes is not at which stage a given plasticity is induced, but rather whether plastic responses to environmental change are adaptive or merely physiological constraints.

95 citations

Journal ArticleDOI
TL;DR: Inhibitory synapse function displays a protracted development during which deficits can be induced by juvenile, but not adult, hearing loss, and these long-lasting changes to inhibitory function may contribute to the auditory processing deficits associated with early hearing loss.
Abstract: The developmental plasticity of excitatory synapses is well established, particularly as a function of age. If similar principles apply to inhibitory synapses, then we would expect manipulations during juvenile development to produce a greater effect and experience-dependent changes to persist into adulthood. In this study, we first characterized the maturation of cortical inhibitory synapse function from just before the onset of hearing through adulthood. We then examined the long-term effects of developmental conductive hearing loss (CHL). Whole cell recordings from gerbil thalamocortical brain slices revealed a significant decrease in the decay time of inhibitory currents during the first 3 mo of normal development. When assessed in adults, developmental CHL led to an enduring decrease of inhibitory synaptic strength, whereas the maturation of synaptic decay time was only delayed. Early CHL also depressed the maximum discharge rate of fast-spiking, but not low-threshold-spiking, inhibitory interneurons. We then asked whether adult onset CHL had a similar effect, but neither inhibitory current amplitude nor decay time was altered. Thus inhibitory synapse function displays a protracted development during which deficits can be induced by juvenile, but not adult, hearing loss. These long-lasting changes to inhibitory function may contribute to the auditory processing deficits associated with early hearing loss.

95 citations

Journal ArticleDOI
TL;DR: Compared the short-term plasticity displayed by a neocortical and a hippocampal pathway in vitro, and observed dramatic differences, which may explain the pathway-specific variance in short- and long-term synaptic plasticity.
Abstract: The expression of short- and long-term synaptic plasticity varies strongly across pathways in the central nervous system. Differences in the properties of transmitter release may underlie some of this variability. Here we compared the short-term plasticity displayed by a neocortical and a hippocampal pathway in vitro, and observed dramatic differences. Conditions known to increase transmitter release probability were more effective in hippocampus, while conditions known to decrease release probability were similarly effective in both pathways. The effects of the irreversible open-channel blocker of N-methyl-d-aspartate receptors, MK-801, implied that synapses in the neocortical pathway have a relatively high probability of transmitter release as compared with synapses in the hippocampal pathway. Differences in release probability may explain the pathway-specific variance in short- and long-term synaptic plasticity.

94 citations

Journal ArticleDOI
TL;DR: It is shown that food restriction can be used as a strategy to restore plasticity in the adult visual cortex of rats, able both to reinstate ocular dominance plasticity and promote recovery from amblyopia.
Abstract: Calorie restriction has been associated with increased life span and delayed decline of memory in animals, suggesting a role in neuronal plasticity. In this study, food restriction is demonstrated to enhance plasticity in the central nervous system and trigger the recovery from ocular deprivation in adulthood.

94 citations

Journal ArticleDOI
TL;DR: Interestingly, recent work from the lab indicates that the enhanced synaptic localization of NMDA receptors promotes increases in the size of dendritic spines, which may represent a structural-based mechanism that supports the formation and stabilization of maladapted synaptic connections that, in a sense, "fix" the addictive behavior in the adolescent and young adult brain.
Abstract: It is now known that brain development continues into adolescence and early adulthood and is highly influenced by experience-dependent adaptive plasticity during this time. Behaviorally, this period is also characterized by increased novelty seeking and risk-taking. This heightened plasticity appears to be important in shaping behaviors and cognitive processes that contribute to proper development of an adult phenotype. However, increasing evidence has linked these same experience-dependent learning mechanisms with processes that underlie drug addiction. As such, the adolescent brain appears to be particularly susceptible to experience-dependent learning processes associated with consumption of alcohol and addictive drugs. At the level of the synapse, homeostatic changes during ethanol consumption are invoked to counter the destabilizing effects of ethanol on neural networks. This homeostatic response may be especially pronounced in the adolescent and young adult brain due to its heightened capacity to undergo experience-dependent changes, and appears to involve increased synaptic targeting of NMDA receptors. Interestingly, recent work from our lab also indicates that the enhanced synaptic localization of NMDA receptors promotes increases in the size of dendritic spines. This increase may represent a structural-based mechanism that supports the formation and stabilization of maladapted synaptic connections that, in a sense, "fix" the addictive behavior in the adolescent and young adult brain.

94 citations


Network Information
Related Topics (5)
Hippocampus
34.9K papers, 1.9M citations
83% related
Hippocampal formation
30.6K papers, 1.7M citations
82% related
Glutamate receptor
33.5K papers, 1.8M citations
82% related
Prefrontal cortex
24K papers, 1.9M citations
81% related
Dopaminergic
29K papers, 1.4M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202316
202244
202172
202076
201953
201864