scispace - formally typeset
Search or ask a question
Topic

Developmental plasticity

About: Developmental plasticity is a research topic. Over the lifetime, 1721 publications have been published within this topic receiving 103438 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is indicated that visual experience induces rapid reorganization of cortical circuitry followed by a period of stabilization, and a close relationship between dynamic changes at single synapses and cortical network function is demonstrated.
Abstract: The impact of activity on neuronal circuitry is complex, involving both functional and structural changes whose interaction is largely unknown. We have used optical imaging of mouse visual cortex responses and two-photon imaging of superficial layer spines on layer 5 neurons to monitor network function and synaptic structural dynamics in the mouse visual cortex in vivo. Total lack of vision due to dark-rearing from birth dampens visual responses and shifts spine dynamics and morphologies toward an immature state. The effects of vision after dark rearing are strongly dependent on the timing of exposure: over a period of days, functional and structural changes are temporally related such that light stabilizes spines while increasing visually driven activity. The effects of long-term light exposure can be partially mimicked by experimentally enhancing inhibitory signaling in the darkness. Brief light exposure, however, results in a rapid, transient, NMDA-dependent increase of cortical responses, accompanied by increased dynamics of dendritic spines. These findings indicate that visual experience induces rapid reorganization of cortical circuitry followed by a period of stabilization, and demonstrate a close relationship between dynamic changes at single synapses and cortical network function.

88 citations

Journal ArticleDOI
25 Apr 2002-Neuron
TL;DR: It is suggested that structural changes underlying ocular dominance plasticity occur rapidly following monocular occlusion, and cortical changes guide subsequent alterations in thalamocortical afferents.

87 citations

Journal ArticleDOI
TL;DR: An analysis of the similarities and differences between deprivation-induced and injury-induced cortical plasticity is provided, to provide for a nuanced comparison of these remarkably similar processes.

87 citations

Journal ArticleDOI
TL;DR: Heterosynaptic plasticity, which is triggered by the same episodes of strong postsynaptic activity and operates on the same time scale as Hebbian-type associative Plasticity, is ideally suited to serve a homeostatic role during on-going synaptic plasticity.
Abstract: Homosynaptic Hebbian-type plasticity provides a cellular mechanism of learning and refinement of connectivity during development in a variety of biological systems. In this review we argue that a complimentary form of plasticity - heterosynaptic plasticity - represents a necessary cellular component for homeostatic regulation of synaptic weights and neuronal activity. The required properties of a homeostatic mechanism which acutely constrains the runaway dynamics imposed by Hebbian associative plasticity have been well-articulated by theoretical and modeling studies. Such mechanism(s) should robustly support the stability of operation of neuronal networks and synaptic competition, include changes at non-active synapses, and operate on a similar time scale to Hebbian-type plasticity. The experimentally observed properties of heterosynaptic plasticity have introduced it as a strong candidate to fulfill this homeostatic role. Subsequent modeling studies which incorporate heterosynaptic plasticity into model neurons with Hebbian synapses (utilizing an STDP learning rule) have confirmed its ability to robustly provide stability and competition. In contrast, properties of homeostatic synaptic scaling, which is triggered by extreme and long lasting (hours and days) changes of neuronal activity, do not fit two crucial requirements for a hypothetical homeostatic mechanism needed to provide stability of operation in the face of on-going synaptic changes driven by Hebbian-type learning rules. Both the trigger and the time scale of homeostatic synaptic scaling are fundamentally different from those of the Hebbian-type plasticity. We conclude that heterosynaptic plasticity, which is triggered by the same episodes of strong postsynaptic activity and operates on the same time scale as Hebbian-type associative plasticity, is ideally suited to serve homeostatic role during on-going synaptic plasticity.

87 citations

Journal ArticleDOI
TL;DR: This work empirically tested whether personality or behavioural plasticity is responsible for the non-random distribution of shy and bold individuals in a heterogeneous environment and found evidence for bold individuals settling in areas with high human disturbance, but also that birds became bolder with increasing age.
Abstract: An emerging hypothesis of animal personality posits that animals choose the habitat that best fits their personality, and that the match between habitat and personality can facilitate population differentiation, and eventually speciation. However, behavioural plasticity and the adjustment of behaviours to new environments have been a classical explanation for such matching patterns. Using a population of dunnocks (Prunella modularis), we empirically tested whether personality or behavioural plasticity is responsible for the non-random distribution of shy and bold individuals in a heterogeneous environment. We found evidence for bold individuals settling in areas with high human disturbance, but also that birds became bolder with increasing age. Importantly, personality primarily determines the distribution of individuals, and behavioural adjustment over time contributes very little to the observed patterns. We cannot, however, exclude a possibility of very early behavioural plasticity (a type of developmental plasticity) shaping what we refer to as 'personality'. Nonetheless, our findings highlight the role personality plays in shaping population structure, lending support to the theory of personality-mediated speciation. Moreover, personality-matching habitat choice has important implications for population management and conservation.

87 citations


Network Information
Related Topics (5)
Hippocampus
34.9K papers, 1.9M citations
83% related
Hippocampal formation
30.6K papers, 1.7M citations
82% related
Glutamate receptor
33.5K papers, 1.8M citations
82% related
Prefrontal cortex
24K papers, 1.9M citations
81% related
Dopaminergic
29K papers, 1.4M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202316
202244
202172
202076
201953
201864