scispace - formally typeset
Search or ask a question
Topic

Developmental plasticity

About: Developmental plasticity is a research topic. Over the lifetime, 1721 publications have been published within this topic receiving 103438 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The ability of severe and/or prolonged stress to impair hippocampal-dependent explicit learning and the plasticity that underlies it is reviewed, and the ability of mild and transient stress to facilitate such plasticity is examined.
Abstract: The adult nervous system is not static, but instead can change, can be reshaped by experience Such plasticity has been demonstrated from the most reductive to the most integrated levels, and understanding the bases of this plasticity is a major challenge It is apparent that stress can alter plasticity in the nervous system, particularly in the limbic system This paper reviews that subject, concentrating on: a) the ability of severe and/or prolonged stress to impair hippocampal-dependent explicit learning and the plasticity that underlies it; b) the ability of mild and transient stress to facilitate such plasticity; c) the ability of a range of stressors to enhance implicit fear conditioning, and to enhance the amygdaloid plasticity that underlies it

484 citations

Journal ArticleDOI
TL;DR: Three distinct ways by which developmental plasticity can promote evolutionary innovation are examined, showing how the process of genetic accommodation provides a feasible and possibly common avenue by which environmentally induced phenotypes can become subject to heritable modification.
Abstract:   Explaining the origins of novel traits is central to evolutionary biology. Longstanding theory suggests that developmental plasticity, the abilityof an individual to modify its development in response to environmental conditions, might facilitate the evolution of novel traits. Yet whether and how such developmental flexibility promotes innovations that persist over evolutionary time remains unclear. Here, we examine three distinct ways by which developmental plasticity can promote evolutionary innovation. First, we show how the process of genetic accommodation provides a feasible and possibly common avenue by which environmentally induced phenotypes can become subject to heritable modification. Second, we posit that the developmental underpinnings of plasticity increase the degrees of freedom by which environmental and genetic factors influence ontogeny, thereby diversifying targets for evolutionary processes to act on and increasing opportunities for the construction of novel, functional and potentially adaptive phenotypes. Finally, we examine the developmental genetic architectures of environment-dependent trait expression, and highlight their specific implications for the evolutionary origin of novel traits. We critically review the empirical evidence supporting each of these processes, and propose future experiments and tests that would further illuminate the interplay between environmental factors, condition-dependent development, and the initiation and elaboration of novel phenotypes.

484 citations

Journal ArticleDOI
TL;DR: Brain plasticity provides a basis for developing better therapies to improve outcome from acquired brain injuries and TMS and other forms of brain stimulation are also being used experimentally to enhance brain plasticity and recovery of function.
Abstract: Neuronal plasticity allows the central nervous system to learn skills and remember information, to reorganize neuronal networks in response to environmental stimulation, and to recover from brain and spinal cord injuries. Neuronal plasticity is enhanced in the developing brain and it is usually adaptive and beneficial but can also be maladaptive and responsible for neurological disorders in some situations. Basic mechanisms that are involved in plasticity include neurogenesis, programmed cell death, and activity-dependent synaptic plasticity. Repetitive stimulation of synapses can cause long-term potentiation or long-term depression of neurotransmission. These changes are associated with physical changes in dendritic spines and neuronal circuits. Overproduction of synapses during postnatal development in children contributes to enhanced plasticity by providing an excess of synapses that are pruned during early adolescence. Clinical examples of adaptive neuronal plasticity include reorganization of cortical maps of the fingers in response to practice playing a stringed instrument and constraint-induced movement therapy to improve hemiparesis caused by stroke or cerebral palsy. These forms of plasticity are associated with structural and functional changes in the brain that can be detected with magnetic resonance imaging, positron emission tomography, or transcranial magnetic stimulation (TMS). TMS and other forms of brain stimulation are also being used experimentally to enhance brain plasticity and recovery of function. Plasticity is also influenced by genetic factors such as mutations in brain-derived neuronal growth factor. Understanding brain plasticity provides a basis for developing better therapies to improve outcome from acquired brain injuries.

442 citations

Journal ArticleDOI
TL;DR: It is proposed that the different forms of plasticity in the granular layer and the molecular layer operate synergistically in a temporally and spatially distributed manner, so as to ultimately create optimal output for behaviour.
Abstract: Studies on synaptic plasticity in the context of learning have been dominated by the view that a single, particular type of plasticity forms the underlying mechanism for a particular type of learning. However, emerging evidence shows that many forms of synaptic and intrinsic plasticity at different sites are induced conjunctively during procedural memory formation in the cerebellum. Here, we review the main forms of long-term plasticity in the cerebellar cortex that underlie motor learning. We propose that the different forms of plasticity in the granular layer and the molecular layer operate synergistically in a temporally and spatially distributed manner, so as to ultimately create optimal output for behaviour.

440 citations

Journal ArticleDOI
TL;DR: The cellular distribution, developmental changes and possible function(s) of PSA-NCAM in the central nervous system of mammals here are reviewed, along with recent findings and theories about the relationships between NCAM protein and PSA as well as the role of different polysialyltransferases.

419 citations


Network Information
Related Topics (5)
Hippocampus
34.9K papers, 1.9M citations
83% related
Hippocampal formation
30.6K papers, 1.7M citations
82% related
Glutamate receptor
33.5K papers, 1.8M citations
82% related
Prefrontal cortex
24K papers, 1.9M citations
81% related
Dopaminergic
29K papers, 1.4M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202316
202244
202172
202076
201953
201864