scispace - formally typeset
Search or ask a question
Topic

Diamagnetism

About: Diamagnetism is a research topic. Over the lifetime, 8059 publications have been published within this topic receiving 132293 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present an explanation for the origin of the diamagnetic correction factors, organized tables of constants compiled from many sources, a simple method for estimating the correct order of magnitude for the diamagnetism correction for any given compound, and a clear explanation of how to use the tabulated constants to calculate the magnetic susceptibility.
Abstract: Measured magnetic susceptibilities of paramagnetic substances must typically be corrected for their underlying diamagnetism. This correction is often accomplished by using tabulated values for the diamagnetism of atoms, ions, or whole molecules. These tabulated values can be problematic since many sources contain incomplete and conflicting data. This article presents an explanation for the origin of the diamagnetic correction factors, organized tables of constants compiled from many sources, a simple method for estimating the correct order of magnitude for the diamagnetic correction for any given compound, a clear explanation of how to use the tabulated constants to calculate the diamagnetic susceptibility, and a worked example for the magnetic susceptibility of copper acetate.

1,999 citations

Book
01 Jan 1965
TL;DR: In this paper, the authors present a review of the properties of the magnetic field and its properties in terms of properties such as: 1. The magnetic field, the magnetization vector, the Langevin Formula for Diamagnetic Susceptibility, and the magnetic shell.
Abstract: 1. The Magnetic Field. 1. Historical. 2. The Magnetic field Vector H. 3. The Magnetization Vector M. 4. Magnetic Induction, the Vector B. 5. The Demagnetization Factor D. 6. Energy of Interaction. 7. Magnetic Effects of Currents. The Magnetic Shell. Faradaya s Law. 8. Maxwella s and Lorentza s Equations. 9. The Magnetic Circuit. 10. Dipole in a Uniform Field. 2. Diamagnetic and Paramagnetic Susceptibilities. 1. Introduction. 2. Review of Quantum Mechanical and Other Results. Diamagnetism. 3. The Langevin Formula for Diamagnetic Susceptibility. 4. Susceptibility of Atoms and Ions. 5. Susceptibility of Molecules. Paramagnetism. 6. Curiea s Law. 7. Theoretical Derivations of Curiea s Law. 8. Quantum Mechanical Treatment. 9. Susceptibility of Quasi--free Ions: the Rare Earths. 10. The Effect of the Crystalline Field. 11. The Iron Group Salts. 12. Covalent Binding and the 3d, 4d, 5d, and 5f--6d Transition Groups. 13. Saturation in Paramagnetic Substances. 14. Paramagnetic Molecules. 15. Paramagnetic Susceptibility of the Nucleus. 3. Thermal, Relaxation, and Resonance Phenomena in Paramagnetic Materials. 1. Introduction. Thermal Phenomena. 2. Summary of Thermodynamic Relationships. 3. The Magnetocaloric Effect: The Production and Measurement of Low Temperatures. Paramagnetic Relaxation. 4. The Susceptibility in an Alternating Magnetic Field. 5. Spin--Lattice Relaxation. 6. Spin--spin Relaxation. Paramagnetic Resonance. 7. Conditions for Paramagnetic Resonance. 8. Line Widths: the Effect of Damping. 9. Fine and Hyperfine Structure: the Spin--Hamiltonian. 10. The Spectra of the Transition Group Ions. The 3d group ions. Covalent binding and the 3d, Ad, 5d, and 5f--6d groups. 4/rare earth ions in salts. Transition ions in various host lattices. 11. The Spectra of Paramagnetic Molecules and Other Systems. Paramagnetic gases. Free radicals. Donors and acceptors in semiconductors. Traps, F--centers, etc. Defects from radiation damage. 12. The Three--Level Maser and Laser. 4. Nuclear Magnetic Resonance. 1. Introduction. 2. Line Shapes and Widths. 3. Resonance in Nonmetallic Solids. 4. The Influence of Nuclear Motion on Line Widths and Relaxations. 5. The Chemical Shift: Fine Structure. 6. Transient Effects: the Spin--Echo Method. 7. Negative Temperatures. 8. Quadrupole Effects and Resonance. 9. Nuclear Orientation. 10. Double Resonance. 11. Beam Methods. 5. The Magnetic Properties of an Electron Gas. 1. Statistical and Thermodynamic Functions for an Electron Gas. 2. The Spin Paramagnetism of the Electron Gas. 3. The Diamagnetism of the Electron Gas. 4. Comparison of Susceptibility Theory with Experiment. 5. The De Haas--Van Alphen Effect. 6. Galvanomagnetic, Thermomagnetic, and Magnetoacoustic Effects. 7. Electron Spin Resonance in Metals. 8. Cyclotron Resonance. 9. Nuclear Magnetic Resonance in Metals. 10. Some Magnetic Properties of Superconductors. 6. Ferromagnetism. 1. Introduction. 2. The Classical Molecular Field Theory and Comparison with Experiment. The spontaneous magnetization region. The paramagnetic region. Thermal effects. 3. The Exchange Interaction. 4. The Series Expansion Method. 5. The Bethe--Peierls--Weiss Method. 6. Spin Waves. 7. Band Model Theories of Ferromagnetism. 8. Ferromagnetic Metals and Alloys. 9. Crystalline Anisotropy. 10. Magnetoelastic Effects. 7. The Magnetization of Ferromagnetic Materials. 1. Introduction. 2. Single--Domain Particles. Critical size. Hysteresis loops. Incoherent rotations. Some experimental results. Other effects. 3. Superparamagnetic Particles. 4. Permanent Magnet Materials. 5. Domain Walls. 6. Domain Structure. 7. The Analysis of the Magnetization Curves of Bulk Material. Domain wall movements. Coercive force. Initial permeability. Picture frame specimens. The approach to saturation. Remanence. Nucleation of domains: whiskers. Barkhausen effect. Preisach--type models. External stresses. Minor hysteresis loops. 8. Thermal Effects Associated with the Hysteresis Loop. 9. Soft Magnetic Materials. 10. Time Effects. 11. Thin Films. 8. Antiferromagnetism. 1. Introduction. 2. Neutron Diffraction Studies. 3. Molecular Field Theory of Antiferromagnetism. Behavior above the Neel temperature. The Neel temperature. Susceptibility below the Neel temperature. Sublattice arrangements. The paramagnetic--antiferromagnetic transition in the presence of an applied magnetic field. Thermal effects. 4. Some Experimental Results for Antiferromagnetic Compounds. 5. The Indirect Exchange Interaction. 6. More Advanced Theories of Antiferromagnetism. The series expansion method. The Bethe--Peierls--Weiss method. Spin waves. 7. Crystalline Anisotropy: Spin Flopping. 8. Metals and Alloys. 9. Canted Spin Arrangements. 10. Domains in Antiferromagnetic Materials. 11. Interfacial Exchange Anisotropy. 9. Ferrimagnetism. 1. Introduction. 2. The Molecular Field Theory of Ferrimagnetism. Paramagnetic region. The ferrimagnetic Neel temperature. Spontaneous magnetization. Extension to include additional molecular fields. Triangular and other spin arrangements. Three sublattice systems. Ferromagnetic interaction between sublattices. 3. Spinels. 4. Garnets. 5. Other Ferrimagnetic Materials. 6. Some Quantum Mechanical Results. 7. Soft Ferrimagnetic Materials. 8. Some Topics in Geophysics. 10. Resonance in Strongly Coupled Dipole Systems. 1. Introduction. 2. Magnetomechanical Effects. 3. Ferromagnetic Resonance. 4. Energy Formulation of the Equations of Motion. 5. Resonance in Ferromagnetic Metals and Alloys. 6. Ferromagnetic Resonance of Poor Conductors. 7. Magnetostatic Modes. 8. Relaxation Processes. Relaxation via spin waves in insulators. Relaxation via spin waves in conductors. Fast relaxation via paramagnetic ions. Slow relaxation via electron redistribution. 9. Nonlinear Effects. 10. Spin--Wave Spectra of Thin Films. 11. Electromagnetic Wave Propagation in Gyromagnetic Media. 12. Resonance in Unsaturated Samples. 13. Ferrimagnetic Resonance. 14. Antiferromagnetic Resonance. 15. Nuclear Magnetic Resonance in Ordered Magnetic Materials. 16. The Mossbauer Effect. Appendix I. Systems of Units. Appendix II. Demagnetization Factors for Ellipsoids of Revolution. Appendix III. Periodic Table of the Elements. Appendix IV. Numerical Values for Some Important Physical Constants. Author Index. Subject Index.

1,665 citations

Book
13 Dec 1990
TL;DR: Magnetism in MATERIALs: MAGNETIC PHENOMENA on the MICROSCOPIC SCALE Magnetic Properties Hysteresis and Related Properties Barkhausen Effect and Related Phenomena Magnetostriction Magnetoresistance.
Abstract: ELECTROMAGNETISM: MAGNETIC PHENOMENA ON THE MACROSCOPIC SCALE Magnetic Fields Magnetic Field Magnetic Induction Magnetic Field Calculations References Further Reading Exercises Magnetization and Magnetic Moment Magnetic Moment Magnetic Poles and Amperian Bound Currents Magnetization Magnetic Circuits and the Demagnetizing Field Penetration of Alternating Magnetic Fields into Materials References Further Reading Exercises Magnetic Measurements Induction Methods Force Methods Methods Depending on Changes in Material Properties Superconducting Quantum Interference Devices References Further Reading Exercises Magnetic Materials Classification of Magnetic Materials Magnetic Properties of Ferromagnets Different Types of Ferromagnetic Materials for Applications Paramagnetism and Diamagnetism References Further Reading Exercises MAGNETISM IN MATERIALS: MAGNETIC PHENOMENA ON THE MICROSCOPIC SCALE Magnetic Properties Hysteresis and Related Properties Barkhausen Effect and Related Phenomena Magnetostriction Magnetoresistance References Further Reading Exercises Magnetic Domains Development of Domain Theory Energy Considerations and Domain Patterns References Further Reading Exercises Domain Walls Properties of Domain Boundaries Domain-Wall Motion References Further Reading Exercises Domain Processes Reversible and Irreversible Domain Processes Determination of Magnetization Curves from Pinning Models Theory of Ferromagnetic Hysteresis Dynamics of Domain Magnetization Processes References Further Reading Exercises Magnetic Order and Critical Phenomena Theories of Paramagnetism and Diamagnetism Theories of Ordered Magnetism Magnetic Structure References Further Reading Exercises Electronic Magnetic Moments Classical Model of Magnetic Moments of Electrons Quantum Mechanical Model of Magnetic Moments of Electrons Magnetic Properties of Free Atoms References Further Reading Exercises Quantum Theory of Magnetism Electron-Electron Interactions Localized Electron Theory Itinerant Electron Theory References Further Reading Exercises MAGNETICS: TECHNOLOGICAL APPLICATIONS Soft Magnetic Materials Properties and Applications of Soft Magnets Materials for AC Applications Materials for DC Applications Materials for Magnetic Shielding References Further Reading Materials Conferences Hard Magnetic Materials Properties and Applications of Hard Magnets Permanent Magnet Materials References Further Reading Materials Conferences Magnetic Recording History of Magnetic Recording Magnetic Recording Media Recording Heads and the Recording Process Modeling the Magnetic Recording Process References Further Reading Magnetic Evaluation of Materials Methods for Evaluation of Materials Properties Methods for Detection of Flaws and Other Inhomogeneities Magnetic Imaging Methods Sensitivity to Microstructure and Material Treatment References Further Reading Solutions to Exercises

1,586 citations

Journal ArticleDOI
TL;DR: In this paper, the magnetic properties of ribbon-shaped nanographite systems with zigzag and armchair edges in a magnetic field were investigated by using a tight-binding model.
Abstract: Electronic and magnetic properties of ribbon-shaped nanographite systems with zigzag and armchair edges in a magnetic field are investigated by using a tight-binding model. One of the most remarkable features of these systems is the appearance of edge states, strongly localized near zigzag edges. The edge state in a magnetic field, generating a rational fraction of the magnetic flux ( f5 p/q) in each hexagonal plaquette of the graphite plane, behaves like a zero-field edge state with q internal degrees of freedom. The orbital diamagnetic susceptibility strongly depends on the edge shapes. The reason is found in the analysis of the ring currents, which are very sensitive to the lattice topology near the edge. Moreover, the orbital diamagnetic susceptibility is scaled as a function of the temperature, Fermi energy, and ribbon width. Because the edge states lead to a sharp peak in the density of states at the Fermi level, the graphite ribbons with zigzag edges show Curie-like temperature dependence of the Pauli paramagnetic susceptibility. Hence, there is a crossover from hightemperature diamagnetic to low-temperature paramagnetic behavior in the magnetic susceptibility of nanographite ribbons with zigzag edges. @S0163-1829~99!02111-6#

1,116 citations

Journal ArticleDOI
TL;DR: In this article, an expression for the magnetic field at a nucleus resulting from the application of an external magnetic field to a polyatomic molecule which has no resultant electron orbital or spin angular momenta in the absence of the external field is developed.
Abstract: An expression is developed for the magnetic field at a nucleus resulting from the application of an external magnetic field to a polyatomic molecule which has no resultant electron orbital or spin angular momenta in the absence of the external field. The field at the nucleus is not the same as the externally applied field because of the field arising from the motion of the electrons in the molecule. The expression for the electron contribution to the magnetic field is shown to consist of two parts. The first is a simple term that is similar to the diamagnetic correction developed by Lamb for atoms. The second is a complicated one arising from second-order paramagnetism and is analogous to the term dependent on the high frequency matrix elements in the theory of molecular diamagnetism. Under certain circumstances the second-order paramagnetic term can become quite large. Since both of these terms are altered when the same nucleus is in different molecules, they at least partially and perhaps completely explain the chemical effect that has been reported by various observers in measurements of nuclear moments. For linear molecules, the second-order paramagnetic term is shown to be directly related to the experimentally measurable spin-rotational magnetic interaction constant of the molecule. This relation is particularly valuable in the important case of molecular hydrogen where it is shown that the correction for second-order paramagnetism is -0.56\ifmmode\times\else\texttimes\fi{}${10}^{\ensuremath{-}5}$. When this is added to the Lamb-type term as calculated by Anderson, the total magnetic shielding constant for molecular ${\mathrm{H}}_{2}$ becomes 2.68\ifmmode\times\else\texttimes\fi{}${10}^{\ensuremath{-}5}$.

1,021 citations


Network Information
Related Topics (5)
Electron
111.1K papers, 2.1M citations
92% related
Magnetization
107.8K papers, 1.9M citations
90% related
Ion
107.5K papers, 2M citations
90% related
Excited state
102.2K papers, 2.2M citations
87% related
Magnetic field
167.5K papers, 2.3M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023183
2022415
2021186
2020194
2019207
2018179