scispace - formally typeset
Search or ask a question

Dielectric spectroscopy

About: Dielectric spectroscopy is a research topic. Over the lifetime, 39909 publications have been published within this topic receiving 974488 citations.

More filters
04 Apr 2005
Abstract: Preface. Preface to the First Edition. Contributors. Contributors to the First Edition. Chapter 1. Fundamentals of Impedance Spectroscopy (J.Ross Macdonald and William B. Johnson). 1.1. Background, Basic Definitions, and History. 1.1.1 The Importance of Interfaces. 1.1.2 The Basic Impedance Spectroscopy Experiment. 1.1.3 Response to a Small-Signal Stimulus in the Frequency Domain. 1.1.4 Impedance-Related Functions. 1.1.5 Early History. 1.2. Advantages and Limitations. 1.2.1 Differences Between Solid State and Aqueous Electrochemistry. 1.3. Elementary Analysis of Impedance Spectra. 1.3.1 Physical Models for Equivalent Circuit Elements. 1.3.2 Simple RC Circuits. 1.3.3 Analysis of Single Impedance Arcs. 1.4. Selected Applications of IS. Chapter 2. Theory (Ian D. Raistrick, Donald R. Franceschetti, and J. Ross Macdonald). 2.1. The Electrical Analogs of Physical and Chemical Processes. 2.1.1 Introduction. 2.1.2 The Electrical Properties of Bulk Homogeneous Phases. Introduction. Dielectric Relaxation in Materials with a Single Time Constant. Distributions of Relaxation Times. Conductivity and Diffusion in Electrolytes. Conductivity and Diffusion-a Statistical Description. Migration in the Absence of Concentration Gradients. Transport in Disordered Media. 2.1.3 Mass and Charge Transport in the Presence of Concentration Gradients. Diffusion. Mixed Electronic-Ionic Conductors. Concentration Polarization. 2.1.4 Interfaces and Boundary Conditions. Reversible and Irreversible Interfaces. Polarizable Electrodes. Adsorption at the Electrode-Electrolyte Interface. Charge Transfer at the Electrode-Electrolyte Interface. 2.1.5 Grain Boundary Effects. 2.1.6 Current Distribution, Porous and Rough Electrodes- the Effect of Geometry. Current Distribution Problems. Rough and Porous Electrodes. 2.2. Physical and Electrochemical Models. 2.2.1 The Modeling of Electrochemical Systems. 2.2.2 Equivalent Circuits. Unification of Immitance Responses. Distributed Circuit Elements. Ambiguous Circuits. 2.2.3 Modeling Results. Introduction. Supported Situations. Unsupported Situations: Theoretical Models. Unsupported Situations: Equivalent Network Models. Unsupported Situations: Empirical and Semiempirical Models. Chapter 3. Measuring Techniques and Data Analysis. 3.1. Impedance Measurement Techniques (Michael C. H. McKubre and Digby D. Macdonald). 3.1.1 Introduction. 3.1.2 Frequency Domain Methods. Audio Frequency Bridges. Transformer Ratio Arm Bridges. Berberian-Cole Bridge. Considerations of Potentiostatic Control. Oscilloscopic Methods for Direct Measurement. Phase-Sensitive Detection for Direct Measurement. Automated Frequency Response Analysis. Automated Impedance Analyzers. The Use of Kramers-Kronig Transforms. Spectrum Analyzers. 3.1.3 Time Domain Methods. Introduction. Analog-to-Digital (A/D) Conversion. Computer Interfacing. Digital Signal Processing. 3.1.4 Conclusions. 3.2. Commercially Available Impedance Measurement Systems (Brian Sayers). 3.2.1 Electrochemical Impedance Measurement Systems. System Configuration. Why Use a Potentiostat? Measurements Using 2, 3 or 4-Terminal Techniques. Measurement Resolution and Accuracy. Single Sine and FFT Measurement Techniques. Multielectrode Techniques. Effects of Connections and Input Impedance. Verification of Measurement Performance. Floating Measurement Techniques. Multichannel Techniques. 3.2.2 Materials Impedance Measurement Systems. System Configuration. Measurement of Low Impedance Materials. Measurement of High Impedance Materials. Reference Techniques. Normalization Techniques. High Voltage Measurement Techniques. Temperature Control. Sample Holder Considerations. 3.3. Data Analysis (J. Ross Macdonald). 3.3.1 Data Presentation and Adjustment. Previous Approaches. Three-Dimensional Perspective Plotting. Treatment of Anomalies. 3.3.2 Data Analysis Methods. Simple Methods. Complex Nonlinear Least Squares. Weighting. Which Impedance-Related Function to Fit? The Question of "What to Fit" Revisited. Deconvolution Approaches. Examples of CNLS Fitting. Summary and Simple Characterization Example. Chapter 4. Applications of Impedance Spectroscopy. 4.1. Characterization of Materials (N. Bonanos, B. C. H. Steele, and E. P. Butler). 4.1.1 Microstructural Models for Impedance Spectra of Materials. Introduction. Layer Models. Effective Medium Models. Modeling of Composite Electrodes. 4.1.2 Experimental Techniques. Introduction. Measurement Systems. Sample Preparation-Electrodes. Problems Associated With the Measurement of Electrode Properties. 4.1.3 Interpretation of the Impedance Spectra of Ionic Conductors and Interfaces. Introduction. Characterization of Grain Boundaries by IS. Characterization of Two-Phase Dispersions by IS. Impedance Spectra of Unusual Two-phase Systems. Impedance Spectra of Composite Electrodes. Closing Remarks. 4.2. Characterization of the Electrical Response of High Resistivity Ionic and Dielectric Solid Materials by Immittance Spectroscopy (J. Ross Macdonald). 4.2.1 Introduction. 4.2.2 Types of Dispersive Response Models: Strengths and Weaknesses. Overview. Variable-slope Models. Composite Models. 4.2.3 Illustration of Typical Data Fitting Results for an Ionic Conductor. 4.3. Solid State Devices (William B. Johnson and Wayne L. Worrell). 4.3.1 Electrolyte-Insulator-Semiconductor (EIS) Sensors. 4.3.2 Solid Electrolyte Chemical Sensors. 4.3.3 Photoelectrochemical Solar Cells. 4.3.4 Impedance Response of Electrochromic Materials and Devices (Gunnar A. Niklasson, Anna Karin Johsson, and Maria Stromme). Introduction. Materials. Experimental Techniques. Experimental Results on Single Materials. Experimental Results on Electrochromic Devices. Conclusions and Outlook. 4.3.5 Time-Resolved Photocurrent Generation (Albert Goossens). Introduction-Semiconductors. Steady-State Photocurrents. Time-of-Flight. Intensity-Modulated Photocurrent Spectroscopy. Final Remarks. 4.4. Corrosion of Materials (Digby D. Macdonald and Michael C. H. McKubre). 4.4.1 Introduction. 4.4.2 Fundamentals. 4.4.3 Measurement of Corrosion Rate. 4.4.4 Harmonic Analysis. 4.4.5 Kramer-Kronig Transforms. 4.4.6 Corrosion Mechanisms. Active Dissolution. Active-Passive Transition. The Passive State. 4.4.7 Point Defect Model of the Passive State (Digby D. Macdonald). Introduction. Point Defect Model. Electrochemical Impedance Spectroscopy. Bilayer Passive Films. 4.4.8 Equivalent Circuit Analysis (Digby D. Macdonald and Michael C. H. McKubre). Coatings. 4.4.9 Other Impedance Techniques. Electrochemical Hydrodynamic Impedance (EHI). Fracture Transfer Function (FTF). Electrochemical Mechanical Impedance. 4.5. Electrochemical Power Sources. 4.5.1 Special Aspects of Impedance Modeling of Power Sources (Evgenij Barsoukov). Intrinsic Relation Between Impedance Properties and Power Sources Performance. Linear Time-Domain Modeling Based on Impedance Models, Laplace Transform. Expressing Model Parameters in Electrical Terms, Limiting Resistances and Capacitances of Distributed Elements. Discretization of Distributed Elements, Augmenting Equivalent Circuits. Nonlinear Time-Domain Modeling of Power Sources Based on Impedance Models. Special Kinds of Impedance Measurement Possible with Power Sources-Passive Load Excitation and Load Interrupt. 4.5.2 Batteries (Evgenij Barsoukov). Generic Approach to Battery Impedance Modeling. Lead Acid Batteries. Nickel Cadmium Batteries. Nickel Metal-hydride Batteries. Li-ion Batteries. 4.5.3 Impedance Behavior of Electrochemical Supercapacitors and Porous Electrodes (Brian E. Conway). Introduction. The Time Factor in Capacitance Charge or Discharge. Nyquist (or Argand) Complex-Plane Plots for Representation of Impedance Behavior. Bode Plots of Impedance Parameters for Capacitors. Hierarchy of Equivalent Circuits and Representation of Electrochemical Capacitor Behavior. Impedance and Voltammetry Behavior of Brush Electrode Models of Porous Electrodes. Impedance Behavior of Supercapacitors Based on Pseudocapacitance. Deviations of Double-layer Capacitance from Ideal Behavior: Representation by a Constant-phase Element (CPE). 4.5.4 Fuel Cells (Norbert Wagner). Introduction. Alkaline Fuel Cells (AFC). Polymer Electrolyte Fuel Cells (PEFC). Solid Oxide Fuel Cells (SOFC). Appendix. Abbreviations and Definitions of Models. References. Index.

5,212 citations

Journal ArticleDOI
01 May 2001-Carbon
TL;DR: In this article, different types of capacitors with a pure electrostatic attraction and/or pseudocapacitance effects are presented, and their performance in various electrolytes is studied taking into account the different range of operating voltage (1V for aqueous and 3 V for aprotic solutions).

4,091 citations

01 Jan 2003
TL;DR: Kremer et al. as mentioned in this paper proposed the theory of dielectric relaxation and analyzed the spectral properties of polymeric systems using NMR spectroscopy and NNMR spectra.
Abstract: A. Schoenhals, F. Kremer: Theory of Dielectric Relaxation.- F. Kremer, A. Schoenhals: Broadband Dielectric Measurement Techniques.- A. Schoenhals, F. Kremer: Analysis of Dielectric Spectra.- F. Kremer, A. Schoenhals: The Scaling of the Dynamics of Glasses and Supercooled Liquids.- P. Lunkenheimer, A. Loidl:Glassy Dynamics Beyond the a-Relaxation.- F. Kremer, A. Huwe, A. Schoenhals, S. Rozanski: Molecular Dynamics in Confining Space.- A. Schoenhals: Molecular Dynamics in Polymer Model Systems.- G. Floudas: Effect of Pressure on the Dielectric Spectra of Polymeric Systems.- J. Mijovich: Dielectric Spectroscopy of Reactive Polymeric Systems.- F. Kremer, A. Schoenhals: Collective and Molecular Dynamics of (Polymeric) Liquid Crystals.- L. Hartmann, K. Fukao, F. Kremer: Molecular Dynamics in thin Polymer Layers.- F. Kremer, S. Rozanski: The Dielectric Poperties of Semiconducting Disordered Solids.- P.A.M. Steeman, J. v. Turnhout: The Dielectric Properties of Inhomogeneous Media.- R. Boehmer, G. Diezemann: Principles and Applications of Pulsed Dielectric Spectroscopy and Nonresonant Dielectric Hole Burning.- R. Richert: Local Dielectric Relaxation by Solvation Dynamics.- T. Pakula: Dielectric and Dynamic Mechanical Spectroscopy-A Comparison.- R. Boehmer, F. Kremer: Dielectric and (Multidimensional) NMR Spectroscopy-A Comparison.- A. Arbe, J. Colmenero, D. Richter: Polymer Dynamics by Dielectric Spectroscopy and Neutron Scattering-A Comparison

3,050 citations

01 Aug 1986
TL;DR: In this article, the fundamental concepts of Spectroscopy Theory Measuring Techniques and Data Analysis Applications of Impedance are discussed. But they do not cover the application of spectroscopy in data analysis.
Abstract: Fundamentals of Impedance Spectroscopy Theory Measuring Techniques and Data Analysis Applications of Impedance

2,130 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used impedance spectroscopy for unravelling the complexities of such materials, which functions by utilizing the different frequency dependences of the constituent components for their separation, and showed that electrical inhomogeneities in ceramic electrolytes, electrode/electrolyte interfaces, surface layers on glasses, ferroelectricity, positive temperature coefficient of resistance behavior and even ferrimagnetism can all be probed, successfully.
Abstract: Electroceramics are advanced materials whose properties and applications depend on the close control of structure, composition, ceramic texture, dopants and dopant (or defect) distribution. Impedance spectroscopy is a powerful technique for unravelling the complexities of such materials, which functions by utilizing the different frequency dependences of the constituent components for their separation. Thus, electrical inhomogeneities in ceramic electrolytes, electrode/electrolyte interfaces, surface layers on glasses, ferroelectricity, positive temperature coefficient of resistance behavior and even ferrimagnetism can all be probed, successfully, using this technique.

2,004 citations

Network Information
Related Topics (5)
213.4K papers, 3.6M citations
92% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Thin film
275.5K papers, 4.5M citations
90% related
144.5K papers, 4.9M citations
90% related
379.8K papers, 3.1M citations
89% related
No. of papers in the topic in previous years