scispace - formally typeset
Search or ask a question
Topic

Differential cryptanalysis

About: Differential cryptanalysis is a research topic. Over the lifetime, 2131 publications have been published within this topic receiving 54681 citations.


Papers
More filters
Book ChapterDOI
05 Feb 2007
TL;DR: A novel concept for choosing initial value vectors is introduced, which totally eliminates the algorithmic noise of the device, leaving only the pure side-channel signal, and which allows to recover the secret key with a small number of samples and without building templates.
Abstract: Side-channel attacks on block ciphers and public key algorithms have been discussed extensively. However, there is only sparse literature about side-cannel attacks on stream ciphers. The few existing references mainly treat timing [8] and template attacks [10], or provide a theoretical analysis [6], [7] of weaknesses of stream cipher constructions. In this paper we present attacks on two focus candidates, Trivium and Grain, of the eSTREAM stream cipher project. The attacks exploit the resynchronization phase of ciphers. A novel concept for choosing initial value vectors is introduced, which totally eliminates the algorithmic noise of the device, leaving only the pure side-channel signal. This attack allows to recover the secret key with a small number of samples and without building templates. To prove the concept we apply the attack to hardware implementations of the ciphers. For both stream ciphers we are able to reveal the complete key.

78 citations

Book ChapterDOI
04 Dec 2016
TL;DR: In this article, the authors proposed the long trail design strategy (LTS), a dual of the wide-trail design strategy that is applicable (but not limited) to ARX constructions, which advocates the use of large S-boxes together with sparse linear layers.
Abstract: We present, for the first time, a general strategy for designing ARX symmetric-key primitives with provable resistance against single-trail differential and linear cryptanalysis. The latter has been a long standing open problem in the area of ARX design. The wide-trail design strategy (WTS), that is at the basis of many S-box based ciphers, including the AES, is not suitable for ARX designs due to the lack of S-boxes in the latter. In this paper we address the mentioned limitation by proposing the long trail design strategy (LTS) – a dual of the WTS that is applicable (but not limited) to ARX constructions. In contrast to the WTS, that prescribes the use of small and efficient S-boxes at the expense of heavy linear layers with strong mixing properties, the LTS advocates the use of large (ARX-based) S-Boxes together with sparse linear layers. With the help of the so-called long-trail argument, a designer can bound the maximum differential and linear probabilities for any number of rounds of a cipher built according to the LTS.

78 citations

Book ChapterDOI
11 Nov 1991
TL;DR: It is shown that an XOR profile with carefully placed zeroes is required in order to avoid some variant forms of differential cryptanalysis, and permutation P needs to be chosen to prevent easy propagation of a constant XOR value back into the same S-box.
Abstract: Differential Cryptanalysis is currently the most powerful tool available for analysing block ciphers, and new block ciphers need to be designed to resist it. It has been suggested that the use of S-boxes based on bent functions, with a flat XOR profile, would be immune. However our studies of differential cryptanalysis, particularly applied to the LOKI cipher, have shown that this is not the case. In fact, this results in a relatively easily broken scheme. We show that an XOR profile with carefully placed zeroes is required. We also show that in order to avoid some variant forms of differential cryptanalysis, permutation P needs to be chosen to prevent easy propagation of a constant XOR value back into the same S-box. We redesign the LOKI cipher to form LOKI91, to illustrate these results, as well as to correct the key schedule to remove the formation of equivalent keys. We conclude with an overview of the security of the new cipher.

77 citations

Book ChapterDOI
10 Feb 2008
TL;DR: This document outlines how to launch integral attacks against bit-based block ciphers against Noekeon, Serpent and present reduced up to 5, 6 and 7 rounds, respectively, using bit-pattern based notations.
Abstract: Integral attacks are well-known to be effective against byte-based block ciphers. In this document, we outline how to launch integral attacks against bit-based block ciphers. This new type of integral attack traces the propagation of the plaintext structure at bit-level by incorporating bit-pattern based notations. The new notation gives the attacker more details about the properties of a structure of cipher blocks. The main difference from ordinary integral attacks is that we look at the pattern the bits in a specific position in the cipher block has through the structure. The bit-pattern based integral attack is applied to Noekeon, Serpent and present reduced up to 5, 6 and 7 rounds, respectively. This includes the first attacks on Noekeon and present using integral cryptanalysis. All attacks manage to recover the full subkey of the final round.

77 citations

Posted Content
TL;DR: In this article, a generic complexity analysis formula for mounting such attacks and new ideas for optimizing impossible differential cryptanalysis are presented, such as testing of parts of the internal state for reducing the number of involved key bits.
Abstract: Impossible differential cryptanalysis has shown to be a very powerful form of cryptanalysis against block ciphers. These attacks, even if extensively used, remain not fully understood because of their high technicality. Indeed, numerous are the applications where mistakes have been discovered or where the attacks lack optimality. This paper aims in a first step at formalizing and improving this type of attacks and in a second step at applying our work to block ciphers based on the Feistel construction. In this context, we derive generic complexity analysis formulas for mounting such attacks and develop new ideas for optimizing impossible differential cryptanalysis. These ideas include for example the testing of parts of the internal state for reducing the number of involved key bits. We also develop in a more general way the concept of using multiple differential paths, an idea introduced before in a more restrained context. These advances lead to the improvement of previous attacks against well known ciphers such as CLEFIA-128 and Camellia, while also to new attacks against 23-round LBlock and all members of the Simon family.

75 citations


Network Information
Related Topics (5)
Cryptography
37.3K papers, 854.5K citations
93% related
Encryption
98.3K papers, 1.4M citations
90% related
Public-key cryptography
27.2K papers, 547.7K citations
89% related
Hash function
31.5K papers, 538.5K citations
88% related
Key (cryptography)
60.1K papers, 659.3K citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202337
202271
202133
202053
201942
201850