scispace - formally typeset
Search or ask a question
Topic

Differential scanning calorimetry

About: Differential scanning calorimetry is a research topic. Over the lifetime, 50315 publications have been published within this topic receiving 1152335 citations. The topic is also known as: DSC.


Papers
More filters
Journal ArticleDOI
28 Nov 2005-Polymer
TL;DR: In this paper, the thermal properties of polylactide (PLA) filaments have been investigated using modulated differential scanning calorimetry (MDSC), which is able to separate the different thermal events and to analyze them more precisely.

169 citations

Journal ArticleDOI
TL;DR: The mechanism of structural transformation during combustion of nickel nitrate (oxidizer)-glycine (fuel) system is investigated by using different in situ techniques, including time-resolved X-ray diffraction (TRXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) with dynamic mass spectrometry (MS), and high-speed infrared thermal imaging as mentioned in this paper.
Abstract: The mechanism of structural transformation during combustion of nickel nitrate (oxidizer)–glycine (fuel) system is investigated by using different in situ techniques, including time-resolved X-ray diffraction (TRXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) with dynamic mass spectrometry (MS), and high-speed infrared thermal imaging. It is shown that for initial compositions with a relatively large fuel-to-oxidizer ratio (φ), pure Ni phase forms directly in the combustion front. For fuel-lean conditions, only NiO phase can be detected. Analysis of the obtained data, including transmission and scanning electron microscopy (TEM–SEM) studies of the quenched reaction fronts, allows us to suggest the intrinsic mechanism of pure metal formation in the investigated system. It is shown that the combustion front propagates because of the reaction between N2O and NH3, which are the products of decomposition of the oxidizer and fuel. The excess of NH3 gas produced in fuel-rich condi...

169 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate different methods for differential scanning calorimetry (hf-DSC) analysis, namely the dynamic method and the step method, and test their accuracy in the determination of the enthalpy-temperature relationship of PCM.
Abstract: Thermal energy storage by latent heat allows storing high amounts of energy working in narrow margins of temperature. The use of phase change material (PCM) for the latent heat storage has been studied in different applications and it has been commercialized in containers to transport blood, products sensible to temperature, to decrease their energy demand. The use of PCM in cooling and refrigeration has been attracting a lot of interest lately, but for all applications, the properties of these materials need to be known with sufficient accuracy. Regarding heat storage, it is necessary to know the enthalpy as a function of temperature. The most widely used calorimeter is the heatflux differential scanning calorimetry (hf-DSC). The objective of this study is to investigate different methods for hf- DSC analysis, namely the dynamic method and the step method, and to test their accuracy in the determination of enthalpy–temperature relationship of PCM. For the dynamic method, a strong influence of heating/cooling rate was observed. For the step method, the resulting enthalpy–temperature relationship is independent of heating/cooling rate. Commercial PCM RT27 was chosen as sample material to avoid subcooling and kinetic effects in the test measurements. The approach introduced in this study can be used to carry out similar investigations for other classes of PCM and/or other DSC instruments.

169 citations

Journal ArticleDOI
TL;DR: Modulated temperature differential scanning calorimetry (MTDSC) as discussed by the authors is a novel thermoanalytical technique which involves the application of a sinusoidal heating program to a sample and the resolution of the response into reversing and non-reversing signals, thereby enabling the deconvolution of complex and overlapping thermal processes.

169 citations

Journal ArticleDOI
TL;DR: In this article, the thermal stability of some fatty acids as phase change materials (PCMs) was investigated and the results showed that they have good thermal stability as a function of latent heat and phase transition temperature range for an actual middle-term thermal energy storage utility.

169 citations


Network Information
Related Topics (5)
Polymer
131.4K papers, 2.6M citations
92% related
Polymerization
147.9K papers, 2.7M citations
88% related
Aqueous solution
189.5K papers, 3.4M citations
88% related
Nanoparticle
85.9K papers, 2.6M citations
87% related
Amorphous solid
117K papers, 2.2M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,992
20224,368
20211,646
20201,696
20191,799
20181,990