scispace - formally typeset
Search or ask a question
Topic

Differential scanning calorimetry

About: Differential scanning calorimetry is a research topic. Over the lifetime, 50315 publications have been published within this topic receiving 1152335 citations. The topic is also known as: DSC.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the role of oxygen and other impurities on the crystallization characteristics of NiZr glasses near the composition was investigated and the first crystallization product is the metastable E93 structure with a = 1.227 nm instead of the equilibrium C16 structure.
Abstract: The role of oxygen and other impurities on the crystallization characteristics of Ni‐Zr glasses near the composition NiZr2, as well as for FeZr2, CoZr2, and NiHf2, has been investigated. For NiZr2 glasses with 1 at. % oxygen, the first crystallization product is the metastable E93 structure with a =1.227 nm instead of the equilibrium C16 structure. A similar effect is found for samples containing ≳3 at. % B. For FeZr2, CoZr2, and NiHf2 the first crystallization product is also E93 structure, even with very small levels of oxygen (≤0.2 at. %). The formation of the E93 structure is always accompanied by an increase in the electrical resistivity, an increase which transmission electron microscopy shows is intrinsic to the phase and unrelated to crystallite size. For Ni36.5Zr63.5 and Ni42Zr58 the crystallization is also accompanied by an increase in electrical resistance and the evolution of a crystal structure similar to the E93 structure in the size of the unit cell and packing fraction but with a different...

168 citations

Journal ArticleDOI
TL;DR: In this article, the authors defined the definition of molecular cooperativity in the αβ splitting region, where a high-frequency dispersion zone a splits off into the main transition zone α and a Goldstein Johari process β at lower frequencies.
Abstract: The definition of molecular cooperativity is discussed. The characteristic length of the glass transition describes the size of this cooperativity. Differential scanning calorimetry (DSC) and heat capacity spectroscopy (HCS) results of a series of poly(n-alkyl methacrylates) (alkyl = methyl, ethyl, propyl, butyl, pentyl, hexyl, and octyl) and a series of statistical copolymers poly(n-butylmethacrylate-stat-styrene) are discussed in terms of molecular cooperativity in the αβ splitting region, where a high-frequency dispersion zone a splits off into the main transition zone α and a Goldstein Johari process β at lower frequencies. The characteristic length tends to small values of order one monomer diameter in the splitting region for scenarios with an α relaxation onset. The statements about the size scale of cooperativity are conditional upon certain assumptions leading to the equation used for calculation of this size from HCS and DSC data. The step height of heat capacity (Δcp) and, with less certainty, the square root of the cooperativity volume or number (V1/2α or 1/2α) are proportional to the temperature distance from the cooperativity onset, T = Tons. © 1996 John Wiley & Sons, Inc.

168 citations

Journal ArticleDOI
TL;DR: In this article, a series of eight thermoplastic polyurethane elastomers were synthesized from 4,4′-methylene diphenyl diisocyanate (MDI) and 1,4-butanediol (BDO) chain extender, with poly(hexamethylene oxide) (PHMO) macrodiol soft segments.
Abstract: A series of eight thermoplastic polyurethane elastomers were synthesized from 4,4′-methylene diphenyl diisocyanate (MDI) and 1,4-butanediol (BDO) chain extender, with poly(hexamethylene oxide) (PHMO) macrodiol soft segments. The PHMO molecular weights employed ranged from 433 g/mol to 1180 g/mol. All materials contained 60% (w/w) of the macrodiol. The materials were characterized by differential scanning calorimetry (DSC) following up to nine different thermal treatments. In addition, three of the materials were selected for characterization by small-angle x-ray scattering (SAXS) following similar thermal treatments. The DSC experiments showed the existence of five hard segment melting regions (labelled T1-T5), which were postulated to result from the disordering or melting of sequences containing one to five MDI-derived units, respectively. Evidence for urethane linkage dissociation and reassociation during annealing at temperatures above 150°C is presented. This process aids in the formation of higher melting structures. Annealing temperatures of 80–100°C provided the maximum SAXS scattering intensity values. Materials containing longer soft segments (and, therefore, longer hard segments) were observed to develop and sustain higher melting hard domain structures and also develop maximum average interdomain spacing values at higher annealing temperatures. Another additional series of three PHMO-based polyurethanes having narrower hard segment length distributions, was synthesized and characterized by DSC in the as-synthesized and annealed states. The resulting DSC endotherms provided further evidence to suggest that the T1-T5 endotherms were possibly due to melting of various hard segment length populations.

168 citations

Journal ArticleDOI
TL;DR: The stabilizing effect of mannitol during the freeze-drying of proteins was studied using L-lactate dehydrogenase (LDH, rabbit muscle), beta-galactosidase (Escherichia coli) and L-asparaginase (Erwinia chrysanthemi) as model proteins to confirm the importance of maintaining excipients in an amorphous state during freeze-Drying.
Abstract: The stabilizing effect of mannitol during the freeze-drying of proteins was studied using L-lactate dehydrogenase (LDH, rabbit muscle), beta-galactosidase (Escherichia coli) and L-asparaginase (Erwinia chrysanthemi) as model proteins. Crystallization of mannitol was studied by powder X-ray diffraction and differential scanning calorimetry (DSC), in relation to the stabilizing effect. All the enzymes were protected concentration-dependently by amorphous mannitol, but the stabilizing effect was decreased with an increase in mannitol crystallinity. The heat-treatment of frozen solutions above crystallization temperature prior to drying enhanced mannitol crystallization and LDH inactivation. The importance of maintaining excipients in an amorphous state during freeze-drying, previously reported for Aspergillus oryzae beta-galactosidase (K. Izutsu et al., Pharm. Res., 10, 1233 (1993)), was confirmed using three different enzymes.

168 citations

Journal ArticleDOI
TL;DR: In this article, the Avrami equation was used to study the devitrification of ZrF4-BaF2-LaF3 (62-33-5 mol %) glass using differential scanning calorimetry.
Abstract: The kinetics of devitrification in ZrF4-BaF2-LaF3 (62–33–5 mol %) glass were studied by isothermal and nonisothermal methods using differential scanning calorimetry. The crystallization reaction followed the Avrami equation, x=1-exp[—(kt)], where x is the fraction crystallized after time t. The rate con stant k obeyed an Arrhenius equation, k(s−1)=6.69 × 1021 exp The value of the Avrami exponent, n, bas 3.2×0.2, indicating three-dimensional crystal growth at a constant number of nucleation sites. Values of kinetics parame ters obtained from isothermal and nonisothermal techniques were in excellent agreement. The heat of crystallization measured from isothermal peaks was computed to be 38.5×3.5 J/g.

168 citations


Network Information
Related Topics (5)
Polymer
131.4K papers, 2.6M citations
92% related
Polymerization
147.9K papers, 2.7M citations
88% related
Aqueous solution
189.5K papers, 3.4M citations
88% related
Nanoparticle
85.9K papers, 2.6M citations
87% related
Amorphous solid
117K papers, 2.2M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,992
20224,368
20211,646
20201,696
20191,799
20181,990