scispace - formally typeset
Search or ask a question
Topic

Differential scanning calorimetry

About: Differential scanning calorimetry is a research topic. Over the lifetime, 50315 publications have been published within this topic receiving 1152335 citations. The topic is also known as: DSC.


Papers
More filters
Journal ArticleDOI
11 Mar 2010-Polymer
TL;DR: In this paper, the crystal phase identification for polyvinylidene fluoride (PVDF) nanocomposites is discussed and clarified, based on X-ray scattering, vibrational spectra, and thermal analysis.

212 citations

Journal ArticleDOI
TL;DR: In this paper, the cure of a liquid dicyanate ester monomer, which reacts to form a high-Tg polycyanurate network, has been investigated using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and a dynamic mechanical technique, torsional braid analysis (TBA).
Abstract: The cure of a liquid dicyanate ester monomer, which reacts to form a high-Tg (≈200°C) polycyanurate network, has been investigated using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and a dynamic mechanical technique, torsional braid analysis (TBA). The monomer is cured with and without catalyst. The same one-to-one relationship between fractional conversion and the dimensionless glass transition temperature is found from DSC data for both the uncatalyzed and catalyzed systems, independent of cure temperature, signifying that the same polymeric structure is produced. Tg is the parameter used to monitor the curing reactions since it is uniquely related to conversion, is sensitive, is accurately determined, and is also directly related to the solidification process. The rate of uncatalyzed reaction is found to be much slower than that of the catalyzed reaction. The apparent overall activation energy for the uncatalyzed reaction is found to be greater than that of the catalyzed reaction (22 and 13 kcal/mol, respectively) from time–temperature superposition of experimental isothermal Tg vs. In time data to form kinetically-controlled master curves for the two systems. Although the time–temperature superposition analysis does not necessitate knowledge of the rate expression, it has limitations, because if the curing process consists of parallel reactions with different activation energies, as is considered to be the case from analysis of the FTIR data, there should not be a kinetically-controlled master curve. Consequently, a kinetic model, which can be satisfactorily extrapolated, is developed from FTIR isothermal cure studies of the uncatalyzed reaction. The FTIR data for the uncatalyzed system at high cure temperatures, where the material is in the liquid or rubbery states throughout cure, 190 to 220°C, are fitted by a model of two parallel reactions, which are second-order and second-order autocatalytic (with activation energies of 11 and 29 kcal/mol), respectively. Using the model parameters determined from the FTIR studies and the relationship between Tg and conversion from DSC studies, Tg, vs. time curves are calculated for the uncatalyzed system and found to agree with DSC experimental results for isothermal cure temperatures from 120 to 200°C to even beyond vitrification. The DSC data for the catalyzed system are also described by the same kinetic model after incorporating changes in the pre-exponential frequency factors (due to the higher concentration of catalyst) and after incorporating diffusion-control, which occurs prior to vitrification in the catalyzed system (but well after vitrification in the uncatalyzed system). Time–temperature-transformation (TTT) isothermal cure diagrams for both systems are calculated from the kinetic model and compared to experimental TBA data. Experimental gelation is found to occur at a conversion of approximately 64% in the catalyzed system by comparison of experimental macroscopic gelation at the various curing temperatures and iso-Tg (iso-conversion) curves calculated from the kinetic model. © 1993 John Wiley & Sons, Inc.

212 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of water content on the gelatinization of wheat starch was examined by differential scanning calorimetry, and three endothermic transitions were observed when starch was heated to 140 °C with 35 to 80% water.
Abstract: The influence of water content on the gelatinization of wheat starch was examined by differential scanning calorimetry. Three endothermic transitions were observed when starch was heated to 140 °C with 35 to 80% (w/w) water. The temperature of the second and third endotherms and the enthalpies of the first and second endotherms vary with water content.

211 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of adding graphene nanoplatelets (GNPs) as thermally conductive nanofillers was investigated experimentally, and the composite PCM samples were prepared by dispersing GNPs in liquid eicosane at various loadings.
Abstract: Alkanes and their mixtures (paraffins) have widely been used as phase change materials (PCMs) for low-to-medium temperature thermal energy storage. Among the various alkanes, eicosane, with a nominal melting temperature of 37 °C, has emerged in energy-storage-based passive thermal management technologies, for electronics for example. In an effort to increase the thermal conductivity of eicosane, the effect of adding graphene nanoplatelets (GNPs) as thermally conductive nanofillers was investigated experimentally. The composite PCM samples were prepared by dispersing GNPs in liquid eicosane at various loadings (0, 1, 2, 5, and 10 wt.%) without any surfactants. Thermal conductivity of the composite PCM samples in their solid phase was then measured by means of the transient plane source technique at elevated temperatures from 10 to 35 °C. Latent heat of fusion and melting point of the samples were also characterized using a differential scanning calorimeter. It was shown that for the highest loading examine...

211 citations

Journal ArticleDOI
TL;DR: In this study, CA has been mixed with PEG 600 as an additive in a polar solvent to prepare membranes with improved properties and the efficiency of protein separation by the developed CA membranes have been quantified using model proteins.

211 citations


Network Information
Related Topics (5)
Polymer
131.4K papers, 2.6M citations
92% related
Polymerization
147.9K papers, 2.7M citations
88% related
Aqueous solution
189.5K papers, 3.4M citations
88% related
Nanoparticle
85.9K papers, 2.6M citations
87% related
Amorphous solid
117K papers, 2.2M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,992
20224,368
20211,646
20201,696
20191,799
20181,990