scispace - formally typeset
Search or ask a question
Topic

Diffraction efficiency

About: Diffraction efficiency is a research topic. Over the lifetime, 10320 publications have been published within this topic receiving 158298 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a micromechanical grating array is used as a configurable optical filter for low-cost and compact visible and near-infrared spectrometric sensors.
Abstract: We present a micromechanical grating array that acts as a configurable optical filter for low-cost and compact visible and near-infrared spectrometric sensors. We show how the grating array can be used either as a fast scanning monochromator or as a diffractive filter, and that the expected signal-to-noise ratio is approximately equal for the two modes of measurement. The free spectral range of the filter can be matched to a defined spectral measurement region, so that we can optimize the relationship between spectral resolution and electromechanical complexity. We have numerically studied diffraction efficiency and errors in filter shape. Finally, we fabricated a small configurable grating array and present measurement results that demonstrate electrostatic filter modulation.

49 citations

Journal ArticleDOI
TL;DR: In this article, a multiwavelength achromatic metasurface is constructed by combining multiple metallic nano-groove gratings, which support enhanced diffractions for transverse magnetic polarization in an ultrawide incident angle range from 10° to 80° due to the excitations of localized gap plasmon modes at different resonance wavelengths.
Abstract: We present an approach to build multiwavelength achromatic metasurface that can work in off-axis configuration with an ultra-wide applicable incident angle range for visible light. The metasurface is constructed by combining multiple metallic nano-groove gratings, which support enhanced diffractions for transverse magnetic polarization in an ultrawide incident angle range from 10° to 80° due to the excitations of localized gap plasmon modes at different resonance wavelengths. To achieve the achromatic diffraction, the ratio between the resonance wavelength and the period of each elementary grating is fixed. Incident light at those multiple resonance wavelengths can be efficiently diffracted into the same direction with near-complete suppression of the specular reflection. Based on the similar approach, we also design a wide-angled off-axis achromatic flat lens for focusing light of different wavelengths into the same position. Our findings provide an alternative simple way to design various off-axis achromatic flat optical elements without stringent angle requirement for imaging and display applications.

49 citations

Journal ArticleDOI
TL;DR: An analytical expression for the spatial spectrum of the conic wave diffracted by a spiral phase plate (SPP) with arbitrary integer singularity of order n is obtained and is equivalent to plane-wave diffraction by a helical axicon.
Abstract: An analytical expression for the spatial spectrum of the conic wave diffracted by a spiral phase plate (SPP) with arbitrary integer singularity of order n is obtained. Conic wave diffraction by the SPP is equivalent to plane-wave diffraction by a helical axicon. A comparison of the conic wave and Gaussian beam diffraction on a SPP is made. It is shown that in both cases a light ring is formed, with the intensity function growing in proportion to ρ2n at small values of radial variable ρ and decreasing as n2ρ−4 at large ρ. By use of direct e-beam writing on the resist, a 32 level SPP of the 2nd order and diameter 5 mm is manufactured. By use of this SPP, a He-Ne laser beam is transformed into a beam with phase singularity and ringlike intensity distribution. A four-order binary diffractive optical element (DOE) with its transmittance proportional to a linear superposition of four angular harmonics is also manufactured. With this DOE, simultaneous optical trapping of several polystyrene beads of diameter 5 μm is performed.

49 citations

Patent
Kenzaburo Suzuki1, Akiko Miyakawa1
08 Feb 2006
TL;DR: In this paper, a diffractive optical element is constituted by sandwiching and closely bonding first and second optical element components 13, 14 which have different refractive indices and are adhered via a relief pattern 20.
Abstract: A diffractive optical element 10 is constituted by sandwiching and closely bonding first and second optical element components 13, 14 which have different refractive indices and are adhered via a relief pattern 20, between third and fourth optical element components 11, 12.

49 citations

Journal ArticleDOI
TL;DR: It is demonstrated that more than 65 percent of the incident-wave energy can be transmitted unidirectionally with less than 0.22 percent transmission in the opposite direction at normal incidence for TE polarization.
Abstract: We achieve a broadband unidirectional transmission or One-way diffraction grating by cascading two parallel gratings made of isotropic material with different periods. In order to significantly reduce the reciprocal transmission of the zero order, one of them is chosen to be a subwavelength grating and designed as a wideband reflector for the incident-wave. It is demonstrated that more than 65 percent of the incident-wave energy can be transmitted unidirectionally with less than 0.22 percent transmission in the opposite direction at normal incidence for TE polarization. And, the relative bandwidth of the unidirectional transmission is greater than 10 percent.

49 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
89% related
Plasmon
32.5K papers, 983.9K citations
88% related
Raman scattering
38.4K papers, 902.6K citations
88% related
Laser
353.1K papers, 4.3M citations
86% related
Polarization (waves)
65.3K papers, 984.7K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202391
2022188
2021167
2020223
2019259
2018259