Topic

# Diffuse reflection

About: Diffuse reflection is a research topic. Over the lifetime, 3419 publications have been published within this topic receiving 61146 citations. The topic is also known as: diffuse & dullness.

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

TL;DR: In this paper, the directional distribution of radiant flux reflected from roughened surfaces is analyzed on the basis of geometrical optics, and the analysis successfully predicts the off-specular maxima in the reflection distribution which are observed experimentally and which emerge as the incidence angle increases.

Abstract: The directional distribution of radiant flux reflected from roughened surfaces is analyzed on the basis of geometrical optics. The analytical model assumes that the surface consists of small, randomly disposed, mirror-like facets. Specular reflection from these facets plus a diffuse component due to multiple reflections and/or internal scattering are postulated as the basic mechanisms of the reflection process. The effects of shadowing and masking of facets by adjacent facets are included in the analysis. The angular distributions of reflected flux predicted by the analysis are in very good agreement with experiment for both metallic and nonmetallic surfaces. Moreover, the analysis successfully predicts the off-specular maxima in the reflection distribution which are observed experimentally and which emerge as the incidence angle increases. The model thus affords a rational explanation for the off-specular peak phenomenon in terms of mutual masking and shadowing of mirror-like, specularly reflecting surface facets.

1,596 citations

••

[...]

TL;DR: In this paper, a method is described which models the interaction of light between diffusely reflecting surfaces, and the resultant surface intensities are independent of observer position, and thus environments can be preprocessed for dynamic sequences.

Abstract: A method is described which models the interaction of light between diffusely reflecting surfaces. Current light reflection models used in computer graphics do not account for the object-to-object reflection between diffuse surfaces, and thus incorrectly compute the global illumination effects. The new procedure, based on methods used in thermal engineering, includes the effects of diffuse light sources of finite area, as well as the “color-bleeding” effects which are caused by the diffuse reflections. A simple environment is used to illustrate these simulated effects and is presented with photographs of a physical model. The procedure is applicable to environments composed of ideal diffuse reflectors and can account for direct illumination from a variety of light sources. The resultant surface intensities are independent of observer position, and thus environments can be preprocessed for dynamic sequences.

1,057 citations

••

[...]

TL;DR: The synthesized C, N, and S-doped titania nanomaterials show an increased electron density of states above the valence band of TiO2, which explains the red-shifted light absorption of these potential photocatalysts and simultaneously suggests a lowered potential as photooxidants compared to Degussa P25 TiO 2.

Abstract: The origin of the visible-light absorption of main-group element (C, N, S) doped TiO2 nanostructures is investigated via diffuse reflectance and valence band X-ray photoelectron spectroscopy. The synthesized C-, N-, and S-doped titania nanomaterials show an increased electron density of states above the valence band of TiO2, which explains the red-shifted light absorption of these potential photocatalysts and simultaneously suggests a lowered potential as photooxidants compared to Degussa P25 TiO2.

1,014 citations

••

[...]

TL;DR: In this paper, the roughness of a plane surface is related to its specular reflectance at normal incidence, and expressions for the case when the root mean square surface roughness is small compared to the wavelength of light are presented.

Abstract: Expressions relating the roughness of a plane surface to its specular reflectance at normal incidence are presented and are verified experimentally. The expressions are valid for the case when the root mean square surface roughness is small compared to the wavelength of light. If light of a sufficiently long wavelength is used, the decrease in measured specular reflectance due to surface roughness is a function only of the root mean square height of the surface irregularities. Long-wavelength specular reflectance measurements thus provide a simple and sensitive method for accurate measurement of surface finish. This method is particularly useful for surface finishes too fine to be measured accurately by conventional tracing instruments. Surface roughness must also be considered in precise optical measurements. For example, a non-negligible systematic error in specular reflectance measurements will be made even if the root mean square surface roughness is less than 0.01 wavelength. The roughness of even optically polished surfaces may thus be important for measurements in the visible and ultraviolet regions of the spectrum.

1,003 citations

••

[...]

TL;DR: In this article, the authors derived the force exerted by the impinging molecules leaving the surface depending on how they leave, assuming the usual Maxwellian distribution of velocities in the gas, the force was found to be M where M=(4π/3) Nma2cmV, N, m, a, and V being the number per unit volume, mass, radius, and mean speed of the molecules and V the speed of a droplet.

Abstract: Kinetic theory of the resistance to a sphere moving through a gas.— (1) Droplets small in comparison with the mean free path. The high degree of accuracy achieved in the experimental determination of the law of motions of droplets through gases, makes a careful theoretical examination of the problem desirable. Assuming the usual Maxwellian distribution of velocities in the gas, the force exerted by the impinging molecules is found to be M where M=(4π/3) Nma2cmV, N, m, a, and cm being the number per unit volume, mass, radius, and mean speed of the molecules and V the speed of the droplet. The force exerted by the molecules leaving the surface depends on how they leave. (1) For uniform evaporation from the whole surface, the force is -M; (2) for specular reflection of all the impinging molecules, -M; (3) for diffuse reflection with unchanged distribution of velocities, -(13/9)M; (4) for diffuse reflection with the Maxwell distribution corresponding to the effective temperature of the part of the surface they come from, -(1+9π/64)M, for a non-conducting droplet (4a), and -(1+π/8)M, for a perfectly conducting droplet (4b). Cases (1) and (2) can not be distinguished experimentally, but (2) is more probable physically. The experimental values agree with 1/10 specular reflection, case (2), and 9/10 diffuse reflection, case (4a) or (4b). For large values of l/a, the droplet behaves like a perfect conductor, case (4b). (2) Comparatively large spheres. The distribution of velocities is no longer Maxwellian because of the hydrodynamic stresses which can not now be neglected. The new law is derived (Eq. 47). The conditions at the surface of the sphere are discussed and it is shown that the diffusely reflected molecules have a Maxwellian distribution corresponding to the temperature and density of the gas, just as though they were reflected with conservation of velocity (specularly). The assumptions of Bassett are theoretically justified and a complete confirmation is obtained for the correction factor for Stokes' law [1+0.7004 (2/s-1) (l/a)] on which Millikan's conclusions are based, especially as to the percentage of specular reflection. (3) Rotating spheres are also considered in an appendix, and the values of the resistance are derived for various cases.

849 citations